期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
基于粒子群优化后随机森林模型的管道内腐蚀风险预测
1
作者 肖雯雯 葛鹏莉 +6 位作者 胡广强 吕瑶 龙武 刘青山 郜双武 曲志豪 张雷 《腐蚀与防护》 北大核心 2025年第2期59-65,共7页
基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进... 基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进行优化。结果表明:塔河油田输油管道内腐蚀主控因素为CO_(2)分压、温度、Cl^(-)含量和H_(2)S分压;经PSO优化后RF模型的决定系数R~2为0.97,均方根误差为0.161,平均绝对误差为0.027,均优于其他3种模型。因此,PSO优化后RF模型能够准确预测管道的腐蚀速率,为油气田管道的腐蚀预警和防护提供依据和支持。 展开更多
关键词 CO_(2)-H_(2)S腐蚀 机器学习 随机森林(RF) 粒子优化(pso) 腐蚀速率
在线阅读 下载PDF
改进粒子群优化(MPSO)算法在动态配水中的应用 被引量:6
2
作者 罗志平 周新志 王标 《中国农村水利水电》 北大核心 2007年第6期43-45,48,共4页
基于在水资源不充足的情况下,对都江堰灌区六大干渠水资源的合理分配,使农业效益达到最大。首先建立灌区优化配水模型,并将粒子群优化算法(PSO)及其改进的算法应用于该模型。分别对标准PSO、两种改进PSO(MPSO)算法与遗传算法进行仿真对... 基于在水资源不充足的情况下,对都江堰灌区六大干渠水资源的合理分配,使农业效益达到最大。首先建立灌区优化配水模型,并将粒子群优化算法(PSO)及其改进的算法应用于该模型。分别对标准PSO、两种改进PSO(MPSO)算法与遗传算法进行仿真对比,结果显示采用PSO算法及其MPSO在农业经济效益上可获得更好的寻优效果,提高了水资源的利用率。 展开更多
关键词 都江堰灌区 农业效益 配水模型 粒子优化算法(pso) 改进pso(Mpso)
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
3
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(pso) 最小二乘支持向量机(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
能谱熵向量法及粒子群优化的RBF神经网络在高压断路器机械故障诊断中的应用 被引量:80
4
作者 徐建源 张彬 +2 位作者 林莘 李斌 腾云 《高电压技术》 EI CAS CSCD 北大核心 2012年第6期1299-1306,共8页
高压真空断路器是电力系统开关设备中极其重要的一种高压电器,而高压断路器故障中80%是由于机械特性不良造成,为此通过小波包变换对高压断路器机械振动信号进行了分析,以信号的能谱熵作为特征输入向量,建立了粒子群优化(PSO)径向基函数(... 高压真空断路器是电力系统开关设备中极其重要的一种高压电器,而高压断路器故障中80%是由于机械特性不良造成,为此通过小波包变换对高压断路器机械振动信号进行了分析,以信号的能谱熵作为特征输入向量,建立了粒子群优化(PSO)径向基函数(RBF)神经网络的高压断路器故障识别系统模型,最后对实际高压断路器振动信号进行获取分析并得到结果。实验结果表明,高压断路器正常信号能谱熵向量各元素分布比较均匀;而故障信号所得能谱熵向量各元素变化较大且有一定变化规律;粒子群优化后的RBF网络模型在正确率、精度等方面高于传统神经网络模型。实验结果表明该方法用于高压断路器的故障诊断是可行的,并且可以为断路器的故障诊断提供更好的理论依据。 展开更多
关键词 小波包 能谱熵 粒子优化(pso)算法 神经网络 高压断路器 振动信号 故障诊断 模型优化
在线阅读 下载PDF
用于机组组合优化的蚁群粒子群混合算法 被引量:31
5
作者 陈烨 赵国波 +2 位作者 刘俊勇 刘天琪 李华强 《电网技术》 EI CSCD 北大核心 2008年第6期52-56,共5页
提出了一种用于求解机组组合优化问题的蚁群粒子群混合优化算法。通过将机组组合解编码为机组操作序列,降低了蚁群算法搜索的难度,使其空间复杂度由指数型降为线性型,使采用蚁群算法求解更大规模的机组组合问题成为可能。采用协同粒子... 提出了一种用于求解机组组合优化问题的蚁群粒子群混合优化算法。通过将机组组合解编码为机组操作序列,降低了蚁群算法搜索的难度,使其空间复杂度由指数型降为线性型,使采用蚁群算法求解更大规模的机组组合问题成为可能。采用协同粒子群算法求解多时段负荷的经济分配问题时,用一个粒子群处理一个时段的优化问题,通过共享粒子群间的惩罚项解决了机组爬升率的约束问题。10机和20机系统的仿真实验和分析结果验证了该方法正确性、有效性和优越性。 展开更多
关键词 机组组合 算法(ACO) 粒子优化(pso) 操作编码
在线阅读 下载PDF
基于粒子群优化的非线性灰色Bernoulli模型在中长期负荷预测中的应用 被引量:23
6
作者 方仍存 周建中 +2 位作者 张勇传 李清清 刘力 《电网技术》 EI CSCD 北大核心 2008年第12期60-63,共4页
将非线性灰色Bernoulli模型用于到中长期电力负荷预测,提出了优选模型参数的粒子群优化算法。该模型是将GM(1,1)模型与Bernoulli微分方程相结合的一种灰色模型,适用于对不同发展趋势曲线的预测。通过粒子群优化算法,以模型预测平均绝对... 将非线性灰色Bernoulli模型用于到中长期电力负荷预测,提出了优选模型参数的粒子群优化算法。该模型是将GM(1,1)模型与Bernoulli微分方程相结合的一种灰色模型,适用于对不同发展趋势曲线的预测。通过粒子群优化算法,以模型预测平均绝对百分误差最小为目标,选择最优的模型参数。采用不同测试数据以及实际电网负荷数据进行了验证,结果表明上述模型有很好的适应性及较高的预测精度。 展开更多
关键词 中长期负荷预测 非线性灰色Bernoulli模型 粒子优化(pso) 参数优选
在线阅读 下载PDF
基于混沌的改进粒子群优化粒子滤波算法 被引量:20
7
作者 王尔申 庞涛 +1 位作者 曲萍萍 蓝晓宇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第5期885-890,共6页
针对基本粒子滤波(PF)算法存在的粒子退化和重采样引起的粒子多样性丧失,导致粒子样本无法精确表示状态概率密度函数真实分布,提出了一种基于混沌的改进粒子群优化(PSO)粒子滤波算法。通过引入混沌序列产生一组混沌变量,将产生的变量映... 针对基本粒子滤波(PF)算法存在的粒子退化和重采样引起的粒子多样性丧失,导致粒子样本无法精确表示状态概率密度函数真实分布,提出了一种基于混沌的改进粒子群优化(PSO)粒子滤波算法。通过引入混沌序列产生一组混沌变量,将产生的变量映射到优化变量的区间提高粒子质量,并利用混沌扰动克服粒子群优化局部最优问题。利用单变量非静态增长模型(UNGM)在高斯噪声和非高斯噪声环境下将该算法与基本粒子滤波和粒子群优化粒子滤波(PSO-PF)的性能进行仿真比较。结果表明:该算法的性能在有效粒子数和均方根误差(RMSE)等参数都优于基本粒子滤波和粒子群优化粒子滤波,改善了算法的精度和跟踪性能。 展开更多
关键词 混沌理论 粒子优化(pso) 粒子滤波(PF) 粒子退化 非线性系统 非高斯噪声
在线阅读 下载PDF
基于粒子群优化算法的配电网重构和分布式电源注入功率综合优化算法 被引量:77
8
作者 赵晶晶 李新 +1 位作者 彭怡 任亚英 《电网技术》 EI CSCD 北大核心 2009年第17期162-166,共5页
随着分布式电源(distributed generation,DG)在配电网中安装比例逐年增加,配电自动化应加强对DG的优化调度功能,发挥DG对配电网优化的有利作用。配电网重构是配电网优化的重要措施,DG联网后,DG注入配电网功率直接影响配电网重构结果。... 随着分布式电源(distributed generation,DG)在配电网中安装比例逐年增加,配电自动化应加强对DG的优化调度功能,发挥DG对配电网优化的有利作用。配电网重构是配电网优化的重要措施,DG联网后,DG注入配电网功率直接影响配电网重构结果。为使配电网性能达到整体最优,提出了一种基于粒子群优化算法(particle swarm optimization,PSO)的配电网重构和DG注入功率综合优化算法。该算法根据PSO并行计算的特点,采用PSO和二进制粒子群优化算法(binary particle swarm optimization,BPSO)相结合的方式,对转换开关状态和DG注入功率2种控制变量同时处理,达到配电网网损、电压偏差最小的目的。将DG作为可调度设备,对配电网重构和DG注入功率进行综合优化,提高了含DG配电网的电能质量和供电可靠性。将该算法应用到3馈线配电系统,仿真结果验证了所提算法的有效性。 展开更多
关键词 分布式电源(DG) 配电网重构 综合优化 粒子优化算法(pso)
在线阅读 下载PDF
电动汽车电机故障时间的粒子群优化灰色预测 被引量:11
9
作者 朱显辉 崔淑梅 +1 位作者 师楠 闵远亮 《高电压技术》 EI CAS CSCD 北大核心 2012年第6期1391-1396,共6页
电动汽车电机故障因素多,可靠性分析需要大样本数据,为准确预测电机的故障时间,建立了故障率较高元件的故障树模型,给出了其可靠性计算式,并将基于小样本数据的灰色算法引入到电机可靠性计算中,利用传统和改进灰色模型进行仿真分析。为... 电动汽车电机故障因素多,可靠性分析需要大样本数据,为准确预测电机的故障时间,建立了故障率较高元件的故障树模型,给出了其可靠性计算式,并将基于小样本数据的灰色算法引入到电机可靠性计算中,利用传统和改进灰色模型进行仿真分析。为了进一步提高预测精度,以两种灰色模型为基础,利用粒子群算法的全局寻优能力,提出了以均方差最小为目标函数的优化模型,对电机故障时间进行预测,并利用两组实测数据进行了验证。结果表明,优化算法的相对平均误差分别为3.36%和5.05%,相对误差最大值分别为5.62%和8.41%。该结果验证了所提算法的有效性,为电动汽车电机的故障预测提供了理论依据。 展开更多
关键词 电动汽车 电机 灰色模型 粒子优化(pso) 故障时间 故障树
在线阅读 下载PDF
基于遗传粒子群混合算法的机组组合优化 被引量:31
10
作者 张炯 刘天琪 +1 位作者 苏鹏 张鑫 《电力系统保护与控制》 EI CSCD 北大核心 2009年第9期25-29,共5页
节能发电调度的目标是实现能耗量最小,合理安排机组发电计划则更为至关重要。在参考文献的基础上,提出了一种用于机组组合优化的遗传粒子群混合优化算法。先用遗传算法求解机组组合,再用粒子群优化算法求解负荷经济分配。按照节能调度... 节能发电调度的目标是实现能耗量最小,合理安排机组发电计划则更为至关重要。在参考文献的基础上,提出了一种用于机组组合优化的遗传粒子群混合优化算法。先用遗传算法求解机组组合,再用粒子群优化算法求解负荷经济分配。按照节能调度思路对遗传算法进行了改进,提高了优化性能。给出了10机算例系统优化结果,验证了该混合算法的可行性和有效性。 展开更多
关键词 机组组合 负荷经济分配 遗传算法(GA) 粒子优化(pso)
在线阅读 下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
11
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子优化算法(pso) 支持向量机(SVM) 优化 双螺旋分类 评价
在线阅读 下载PDF
混合粒子群优化算法在电网规划中的应用 被引量:20
12
作者 符杨 徐自力 曹家麟 《电网技术》 EI CSCD 北大核心 2008年第15期31-35,共5页
在含被动聚集因子的粒子群优化(particle swarm optimization with passive congregation,PSOPC)算法和和谐搜索(harmony search,HS)的基础上,构建了一种新的混合粒子群优化(heuristic particle swarm optimization,HPSO)算法。该算法... 在含被动聚集因子的粒子群优化(particle swarm optimization with passive congregation,PSOPC)算法和和谐搜索(harmony search,HS)的基础上,构建了一种新的混合粒子群优化(heuristic particle swarm optimization,HPSO)算法。该算法根据电网规划的特点,采用"飞回机制"处理变量的约束条件,利用和谐搜索处理规划问题的约束条件,使粒子群在迭代过程中始终保持在可行域内,同时该算法中引入了被动聚集因子,有效改善了粒子的进化机制,提高了粒子的自由搜索能力。18节点算例验证了该算法应用于电网规划的正确性和有效性,HPSO算法、粒子群优化算法和PSOPC算法的比较结果表明该HPSO算法具有较好的收敛性能。 展开更多
关键词 电网规划 粒子优化(pso) 被动聚集因子 和谐搜索(HS) 飞回机制 约束条件
在线阅读 下载PDF
改进的粒子群优化算法在QoS选播路由中的应用 被引量:9
13
作者 李陶深 陈松乔 +2 位作者 杨明 赵志刚 葛志辉 《小型微型计算机系统》 CSCD 北大核心 2010年第1期67-71,共5页
QoS选播路由问题是一个非线性的组合优化问题,已被证明是NP完全问题.提出一种基于改进的粒子群优化的多QoS选播路由算法.算法引入一种特殊相加算子,让较差的路径能够不断向较好的路径学习,使算法尽可能向全局最优者靠近;设计一种随机变... QoS选播路由问题是一个非线性的组合优化问题,已被证明是NP完全问题.提出一种基于改进的粒子群优化的多QoS选播路由算法.算法引入一种特殊相加算子,让较差的路径能够不断向较好的路径学习,使算法尽可能向全局最优者靠近;设计一种随机变异算子,通过对全局极值进行随机变异,保证了粒子的多样性,提高了算法跳出局部最优解的能力.实验结果表明,该算法是可行和有效的,能够在资源预留的基础上较好地满足用户对带宽和时延的要求. 展开更多
关键词 选播 服务质量(QoS) 粒子优化(pso)算法 随机扰动算子
在线阅读 下载PDF
粒子群优化算法中惯性权重综述 被引量:38
14
作者 周俊 陈璟华 +1 位作者 刘国祥 许伟龙 《广东电力》 2013年第7期6-12,共7页
粒子群优化(particle swarm optimization,PSO)算法是基于鸟群觅食行为的一种新型的群体智能算法,而惯性权重是PSO算法中一个极其重要的参数,其值的选取直接关系粒子在寻优过程中的开发能力和探索能力。在介绍PSO算法的基本原理的基础上... 粒子群优化(particle swarm optimization,PSO)算法是基于鸟群觅食行为的一种新型的群体智能算法,而惯性权重是PSO算法中一个极其重要的参数,其值的选取直接关系粒子在寻优过程中的开发能力和探索能力。在介绍PSO算法的基本原理的基础上,分析惯性权重对粒子群优化算法在收敛性方面的影响,综述了现有文献对惯性权重的研究进展,并评述了各种惯性权重取值策略所取得的研究成果和存在的不足之处。 展开更多
关键词 粒子优化(pso)算法 惯性权重 智能算法 收敛性 开发能力 探索能力
在线阅读 下载PDF
粒子群优化算法在源强反算问题中的应用研究 被引量:10
15
作者 张久凤 姜春明 +2 位作者 王正 贾星兰 袁纪武 《中国安全科学学报》 CAS CSCD 北大核心 2010年第10期123-128,共6页
在危险化学品泄漏事故中泄漏源强是预测事故后果的主要影响参数,也是事故应急救援决策的基础。为了在化学品泄漏事故过程中快速准确地获取泄漏源强数据,将粒子群优化(PSO)算法应用于危险化学品泄漏源强的反算中。利用高斯烟羽扩散模型... 在危险化学品泄漏事故中泄漏源强是预测事故后果的主要影响参数,也是事故应急救援决策的基础。为了在化学品泄漏事故过程中快速准确地获取泄漏源强数据,将粒子群优化(PSO)算法应用于危险化学品泄漏源强的反算中。利用高斯烟羽扩散模型和下风向浓度测量数据,将计算浓度与测量浓度的误差平方和作为目标函数,采用粒子群算法来优化,以确定源强并通过模拟的测量浓度数据进行算法有效性验证。结果表明,PSO算法及其参数改进算法不依赖于初值的选择,计算速度快,能满足事故应急响应救援的需要。 展开更多
关键词 泄漏事故 高斯模型 粒子优化(pso)算法 源强 反算
在线阅读 下载PDF
基于免疫克隆原理的改进粒子群优化算法的研究 被引量:18
16
作者 陈颖 徐晓晖 李志全 《系统仿真学报》 CAS CSCD 北大核心 2008年第6期1471-1474,共4页
提出了一种改进的粒子群优化(PSO)算法来进行函数优化,以克服PSO算法容易陷入局部极值的不足,加快收敛速度,从而实现全局搜索。PSO算法是基于群体智能的随机优化算法,参数结构简单,但收敛速度慢,容易陷入局部极值。通过对PSO算法的深入... 提出了一种改进的粒子群优化(PSO)算法来进行函数优化,以克服PSO算法容易陷入局部极值的不足,加快收敛速度,从而实现全局搜索。PSO算法是基于群体智能的随机优化算法,参数结构简单,但收敛速度慢,容易陷入局部极值。通过对PSO算法的深入分析,基于传统的速度——位置更新操作,把免疫克隆(IC)原理引入PSO算法中,将抗体视为粒子,根据亲和度的高低进行粒子克隆选择、克隆抑制和高频变异,提高了种群的多样性和全局搜索的能力。测试结果表明,该算法完成全局搜索所需的迭代次数明显少于PSO算法,大大缩短了搜索时间,在多维函数最优解的搜索中具有优良的性能。 展开更多
关键词 体智能 粒子优化(pso)算法 免疫克隆(IC)算法 全局搜索
在线阅读 下载PDF
基于多种群分层粒子群优化的配电网络重构 被引量:6
17
作者 吕林 罗绮 +1 位作者 刘俊勇 谢连方 《电网技术》 EI CSCD 北大核心 2008年第S2期42-45,共4页
为解决配电网的重构问题,文章基于控制理论的分层思想提出了多种群分层粒子群优化(particle swarm optimization,PSO)算法:在第1层采用多种群粒子群并行计算;在第2层将每个种群看成一个粒子,将种群的最优值作为当前粒子的个体最优值,进... 为解决配电网的重构问题,文章基于控制理论的分层思想提出了多种群分层粒子群优化(particle swarm optimization,PSO)算法:在第1层采用多种群粒子群并行计算;在第2层将每个种群看成一个粒子,将种群的最优值作为当前粒子的个体最优值,进行粒子群优化并把优化结果返回到第1层。该算法结合配电网络的特点改进了PSO算法粒子位置的更新规则,提高了迭代过程中有效解的产生概率。最后对2个典型IEEE测试系统进行了仿真计算,结果表明多种群分层PSO算法的优化结果和收敛特性均优于PSO算法。文章提出的多种群分层并行计算思想对大规模系统的优化问题求解提供了新思路。 展开更多
关键词 配电网重构 分层结构 粒子优化(pso)
在线阅读 下载PDF
基于免疫粒子群算法的电力系统无功优化 被引量:25
18
作者 鲁忠燕 邓集祥 汪永红 《电网技术》 EI CSCD 北大核心 2008年第24期55-59,共5页
为提高粒子群优化(particle swarm optimization,PSO)算法的收敛性能,将免疫算法(immunity algorithms,IA)的免疫信息处理机制引入到标准粒子群算法,形成一种新的优化算法,即免疫粒子群算法。该算法将免疫算法的免疫记忆和自我调节机制... 为提高粒子群优化(particle swarm optimization,PSO)算法的收敛性能,将免疫算法(immunity algorithms,IA)的免疫信息处理机制引入到标准粒子群算法,形成一种新的优化算法,即免疫粒子群算法。该算法将免疫算法的免疫记忆和自我调节机制引入PSO,并采用基于粒子浓度机制的多样性保持策略;同时,用免疫算法的"接种疫苗"和"免疫选择"来指导搜索过程。改进后的算法可以很好的保持优化过程中粒子群的多样性,抑制优化过程中出现的退化现象,保证算法的收敛精度和收敛速度。IEEE30节点系统算例仿真表明,IA-PSO算法与标准PSO算法相比,能够及时跳出局部最优得到全局最优解,且收敛速度快、精度高。 展开更多
关键词 免疫算法(IA) 粒子优化算法(pso) 免疫粒子算法(IA-pso) 无功优化
在线阅读 下载PDF
基于粒子群优化的自治水下机器人模糊路径规划 被引量:8
19
作者 孙兵 朱大奇 杨元元 《高技术通讯》 CAS CSCD 北大核心 2013年第12期1284-1291,共8页
针对自治水下机器人(AUV)的路径规划问题进行了研究,依据模糊控制规则,提出了一种基于粒子群优化(PSO)的模糊路径规划算法。首先建立水下水平面内路径规划的模糊规则,并应用A/B模型进行静态和动态障碍物的避障。同时考虑到模糊边界的选... 针对自治水下机器人(AUV)的路径规划问题进行了研究,依据模糊控制规则,提出了一种基于粒子群优化(PSO)的模糊路径规划算法。首先建立水下水平面内路径规划的模糊规则,并应用A/B模型进行静态和动态障碍物的避障。同时考虑到模糊边界的选择具有很大的随意性,所生成的路径并非最优,利用PSO算法进行模糊集合的优化,使得最终生成的路径最优。应用设计的粒子群优化模糊(PSO-fuzzy)算法针对动静态障碍物进行了避障路径规划,仿真结果验证了所设计的方法的有效性。 展开更多
关键词 自治水下机器人(AUV) 路径规划 模糊控制 粒子优化(pso) 避障
在线阅读 下载PDF
基于粒子群优化算法的社交网络可视化 被引量:3
20
作者 刘芳 孙芸 +1 位作者 杨庚 林海 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第1期37-43,共7页
为了使用户快捷、清晰地发现及研究微博用户之间的关系,提出基于粒子群优化(PSO)算法的微博数据可视化方法.根据用户在微博中的影响力将用户分为n层,以此来表示用户在网络中对信息的传播影响力的等级.基于数据的关联关系对数据进行子群... 为了使用户快捷、清晰地发现及研究微博用户之间的关系,提出基于粒子群优化(PSO)算法的微博数据可视化方法.根据用户在微博中的影响力将用户分为n层,以此来表示用户在网络中对信息的传播影响力的等级.基于数据的关联关系对数据进行子群划分;基于粒子群优化算法,设计目标函数,使粒子群优化算法适应社交网络的布局要求.为了进一步增强可视化效果,降低视觉复杂度,采用曲线代替直线,应用传输函数设置不透明度以及交互的可视化技术.实验结果表明,该方法可以形成清晰的可视化结果,以便更好地分析微博用户之间的关系. 展开更多
关键词 微博 粒子优化(pso) 可视化分析 社交网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部