期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
非均匀网格上时间分数阶扩散-波动方程的BDF2型有限元方法
1
作者 祝鹏 陈艳萍 徐先宇 《数学物理学报(A辑)》 北大核心 2025年第4期1268-1290,共23页
众所周知,非均匀网格的研究可以有效地解决分数阶Caputo型导数的初值奇异现象.在非均匀网格的理论分析中,经常采用分数阶离散Grönwall不等式进行误差分析,缺乏对误差结构的具体研究.设计了一种非均匀网格上的误差卷积结构,用于分... 众所周知,非均匀网格的研究可以有效地解决分数阶Caputo型导数的初值奇异现象.在非均匀网格的理论分析中,经常采用分数阶离散Grönwall不等式进行误差分析,缺乏对误差结构的具体研究.设计了一种非均匀网格上的误差卷积结构,用于分析时间分数阶扩散-波动方程.将二次插值近似应用于Caputo型导数,通过使用降阶法和离散互补卷积核对Caputo型导数进行离散,得到了非均匀网格上的BDF2型有限元方法.离散互补卷积核在算法的收敛性分析中至关重要,因为它简化有限元理论分析的过程,并基于卷积核和插值估计的性质构建了全局一致性误差估计.详细估计了非均匀网格上BDF2有限元格式的L^(2)-范数误差和H^(1)-范数误差,并通过实验验证了所提出的有限元格式与理论收敛阶之间的一致性. 展开更多
关键词 时间分数扩散-波动方程 离散卷积核 BDF2 型有限元格式 误差卷积结构 非均匀网格
在线阅读 下载PDF
一类空间-时间分数阶Whitham-Broer-Kaup方程的行波解 被引量:8
2
作者 郭丽红 周冉 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期7-12,共6页
考虑修正Riemann-Liouville分数阶导数意义下的一类空间-时间Whitham-Broer-Kaup(WBK)方程行波解的存在性,首先将WBK方程化为常微分方程组,然后利用首次积分法得到该方程一些行波解的解析表达式.
关键词 空间-时间分数阶wbk方程 修正的Riemann-Liouville分数导数 行波解 首次积分方法
在线阅读 下载PDF
基于时间-空间分数阶偏微分方程的图像去噪模型 被引量:9
3
作者 黄果 许黎 +1 位作者 陈庆利 蒲亦非 《系统工程与电子技术》 EI CSCD 北大核心 2012年第8期1741-1752,共12页
为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分... 为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分数阶偏微分方程的去噪模型中,从而构建了基于时间-空间分数阶偏微分方程的去噪模型,该模型实现了在时间方向上和空间平面内的同时去噪。实验结果表明,提出的基于时间-空间分数阶偏微分方程的图像去噪模型较基于空间分数阶偏微分方程的图像去噪模型不仅可以提高信噪比,而且可以大幅减少图像获得最大信噪比所需要的迭代次数。 展开更多
关键词 分数微积分 时间-空间分数偏微分方程 分数梯度 变分法 泛函极值 图像去噪
在线阅读 下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
4
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
在线阅读 下载PDF
时间-空间分数阶扩散方程 被引量:1
5
作者 朱波 韩宝燕 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函... 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 展开更多
关键词 时间-空间分数扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数
在线阅读 下载PDF
基于时间-空间谱配法的分数阶微分方程的一种解法
6
作者 王龙 赵丹 《山东农业大学学报(自然科学版)》 北大核心 2019年第1期142-144,共3页
随着分数阶微分方程的应用领域越来越广泛,相应的理论研究也变得更加重要。本文针对时间分数阶的经典微分方程,提出一种加入空间谱配的解法。通过对时间分数阶经典微分方程的推导,得出等价的微分方程并获取空间配置点,然后应用高斯积分... 随着分数阶微分方程的应用领域越来越广泛,相应的理论研究也变得更加重要。本文针对时间分数阶的经典微分方程,提出一种加入空间谱配的解法。通过对时间分数阶经典微分方程的推导,得出等价的微分方程并获取空间配置点,然后应用高斯积分公式转变空间,求出转换方程的积分项。数值验算结果表明:采用时间-空间谱配法得出的精确解与数值解吻合程度较好,基本能满足分数阶微分方程高精度近似解的要求。 展开更多
关键词 分数微分方程 时间-空间谱配法 精确解 数值解
在线阅读 下载PDF
时间分数阶反应-扩散方程的隐式差分近似 被引量:20
7
作者 于强 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期315-319,共5页
考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它... 考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它的收敛性.最后给出数值例子. 展开更多
关键词 时间分数 反应-扩散方程 隐式差分近似 稳定性 收敛性
在线阅读 下载PDF
时间分数阶反应-扩散方程混合差分格式的并行计算方法 被引量:1
8
作者 党旭 杨晓忠 《高校应用数学学报(A辑)》 北大核心 2019年第3期325-338,共14页
分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I... 分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I)和交替分段隐-显格式(alternative segment implicit-explicit,ASI-E),这类并行差分格式是基于Saul’yev非对称格式与古典显式差分格式和古典隐式差分格式的有效组合.理论分析格式解的存在唯一性,无条件稳定性和收敛性.数值试验验证了理论分析,表明ASE-I格式和ASI-E格式具有理想的计算精度和明显的并行计算性质,证实了这类并行差分方法求解时间分数阶反应-扩散方程是有效的. 展开更多
关键词 时间分数反应-扩散方程 ASE-I格式 ASI-E格式 无条件稳定性 收敛
在线阅读 下载PDF
一类半线性时间分数阶扩散-波动方程解的整体存在唯一性
9
作者 何鑫海 刘梅 杨晗 《数学物理学报(A辑)》 CSCD 北大核心 2022年第6期1705-1718,共14页
该文研究一类半线性时间分数阶扩散-波动方程的柯西问题,基于线性问题的L^(r)-L^(q)估计,通过整体迭代法,在小初值的情况下研究非线性项指数对于解的整体存在性影响,在指数满足一定条件的情况下证明了整体解的存在唯一性.
关键词 时间分数扩散-波动方程 柯西问题 小初值 整体解
在线阅读 下载PDF
时间分数阶慢扩散方程的一类有效差分方法 被引量:1
10
作者 赵雅迪 吴立飞 +1 位作者 杨晓忠 孙淑珍 《数学物理学报(A辑)》 CSCD 北大核心 2018年第6期1122-1134,共13页
对时间分数阶慢扩散方程提出一类数值差分方法:显-隐(Explicit-Implicit, E-I)和隐-显(Implicit-Explicit, I-E)差分方法.它是将古典显式格式与古典隐式格式相结合构造出的一类有效差分格式.理论证明了格式解的存在唯一性,用傅里叶方法... 对时间分数阶慢扩散方程提出一类数值差分方法:显-隐(Explicit-Implicit, E-I)和隐-显(Implicit-Explicit, I-E)差分方法.它是将古典显式格式与古典隐式格式相结合构造出的一类有效差分格式.理论证明了格式解的存在唯一性,用傅里叶方法证明了格式的稳定性和收敛性.数值试验验证了理论分析,表明E-I格式和I-E格式在具有良好的精度且无条件稳定的情况下,计算速度比隐式格式提高了75%.从而用此格式解决分数阶慢扩散方程是可行的. 展开更多
关键词 时间分数慢扩散方程 -隐(隐-显)差分格式 稳定性 收敛性 数值试验
在线阅读 下载PDF
一类半线性分数阶σ-发展方程解的整体存在唯一性
11
作者 陈雪丽 何鑫海 杨晗 《应用数学》 北大核心 2023年第3期674-683,共10页
本文研究一类半线性时间分数阶σ-发展方程的Cauchy问题.利用改进的Bessel函数得到相应线性齐次问题解的能量估计,通过整体迭代法,在小初值情形下证明了在非线性项指数满足一定条件的情况下解的整体存在唯一性.本文在特殊情形下所得结... 本文研究一类半线性时间分数阶σ-发展方程的Cauchy问题.利用改进的Bessel函数得到相应线性齐次问题解的能量估计,通过整体迭代法,在小初值情形下证明了在非线性项指数满足一定条件的情况下解的整体存在唯一性.本文在特殊情形下所得结论的极限与经典结论一致. 展开更多
关键词 时间分数σ-发展方程 CAUCHY问题 整体迭代法 整体解
在线阅读 下载PDF
时间分数阶扩散方程的二阶差分/拟小波法
12
作者 郭冲 赵凤群 《陕西科技大学学报》 CAS 2019年第3期179-184,共6页
为了研究时间分数阶扩散方程的高精度的数值方法,得到高阶的数值格式,采用Caputo分数阶导数的差分公式——L2-1_σ公式离散时间分数阶导数,得到了时间分数阶扩散方程的半离散格式,并证明了半离散格式是无条件稳定的,且收敛阶为O(τ~2).... 为了研究时间分数阶扩散方程的高精度的数值方法,得到高阶的数值格式,采用Caputo分数阶导数的差分公式——L2-1_σ公式离散时间分数阶导数,得到了时间分数阶扩散方程的半离散格式,并证明了半离散格式是无条件稳定的,且收敛阶为O(τ~2).空间导数采用拟小波方法离散,构造出了时间分数阶扩散方程的一种新的全离散数值格式.最后,通过数值算例验证了理论分析的正确性和数值解的有效性,而且结果表明这种算法收敛快、误差小,是一种高效的数值算法. 展开更多
关键词 时间分数扩散方程 L2-1σ公式 拟小波法 稳定性
在线阅读 下载PDF
改进时间分数阶模型模拟非Fick溶质运移 被引量:9
13
作者 夏源 吴吉春 张勇 《水科学进展》 EI CAS CSCD 北大核心 2013年第3期349-357,共9页
通过将经典时间分数阶对流-弥散方程的等待时间分布函数的尾部修改为指数型,推导出了改进时间分数阶对流-弥散方程,并提出有效的时空算子分裂数值求解方法。对两个理想算例和一个实际算例进行计算,结果表明,改进的时间分数阶对流-弥散... 通过将经典时间分数阶对流-弥散方程的等待时间分布函数的尾部修改为指数型,推导出了改进时间分数阶对流-弥散方程,并提出有效的时空算子分裂数值求解方法。对两个理想算例和一个实际算例进行计算,结果表明,改进的时间分数阶对流-弥散方程继承了时间分数阶对流-弥散方程能模拟穿透曲线幂率型拖尾分布的优点,还可模拟穿透曲线尾部由幂率型转换到指数型的过程;特征时间λ、分数阶指数γ和两相容量比例系数β共同决定了运移行为。改进的新模型可以区分非均质介质中流动相和非流动相中的溶质浓度,更细微地模拟非Fick溶质运移行为。 展开更多
关键词 改进时间分数模型 对流-弥散方程 非Fick溶质运移 拖尾分布 地下水数值模拟
在线阅读 下载PDF
分数阶脉冲中立型随机微积分方程的适定性 被引量:1
14
作者 Diem Dang Huan 高洪俊 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期405-421,共17页
利用Sadovskii不动点定理以及α-预解算子理论讨论了一类在Hilbert空间中带无限时滞的分数阶脉冲中立型随机微积分方程温和解的适定性,并通过举例说明了结果的有效性.
关键词 α-预解算子 分数随机微积分方程 空间 中立型 脉冲 Sadovskii不动点定理
在线阅读 下载PDF
线性散焦PT对称波导中饱和非线性孤子传输与控制 被引量:2
15
作者 武琦 王娟芬 +3 位作者 杜晨锐 杨玲珍 薛萍萍 樊林林 《光子学报》 EI CAS CSCD 北大核心 2023年第6期304-312,共9页
为了研究线性散焦宇称-时间对称双通道波导中分数阶衍射饱和非线性下孤子的模式以及孤子的传输与控制,通过改进的平方算子迭代法对含有线性势的分数阶饱和非线性薛定谔方程进行数值计算得到孤子模式,傅里叶配置法判断孤子线性稳定性,并... 为了研究线性散焦宇称-时间对称双通道波导中分数阶衍射饱和非线性下孤子的模式以及孤子的传输与控制,通过改进的平方算子迭代法对含有线性势的分数阶饱和非线性薛定谔方程进行数值计算得到孤子模式,傅里叶配置法判断孤子线性稳定性,并利用分步傅里叶法模拟仿真孤子的传输。研究结果表明:在散焦饱和非线性中,该宇称-时间对称波导可支持稳定的双峰灰孤子模式。随着饱和非线性系数和传播常数绝对值的增大,双峰灰孤子的背景强度增大,灰度值减小,功率增大。Lévy指数、增益/损耗系数和饱和非线性系数的增加会导致孤子的横向能流密度变化增大,但在波导通道位置处接近于0。在聚焦饱和非线性下,线性散焦宇称-时间对称波导对亮孤子光束具有控制作用。当光束在波导中心输入,孤子以呼吸子的形式长距离传输;在非波导中心输入,光束以初始输入位置为边界振荡传输。随着饱和非线性系数的增大,光束的振荡频率增加,光束宽度变宽,峰值强度减小。宇称-时间对称波导势阱深度的增加会导致光束的振荡频率增加,峰值强度增加。该研究结果可为宇称-时间对称波导对光束的控制提供一定的理论参考。 展开更多
关键词 非线性光学 宇称-时间对称光波导 灰孤子 光束控制 饱和非线性 分数薛定谔方程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部