旋转潮流控制器(rotary power flow controller,RPFC)应用到电力系统潮流控制中,具有控制方法简单、输出无谐波、可靠性高、成本低的优点,但目前对其模型和控制特性的研究还并不充分。为此,分析并建立了RPFC的稳态数学模型,对RPFC的稳...旋转潮流控制器(rotary power flow controller,RPFC)应用到电力系统潮流控制中,具有控制方法简单、输出无谐波、可靠性高、成本低的优点,但目前对其模型和控制特性的研究还并不充分。为此,分析并建立了RPFC的稳态数学模型,对RPFC的稳态特性进行了研究,推出了RPFC注入线路电压与转子角之间的关系,分析了RPFC的潮流控制特性。RPFC注入线路的电压受转子角度的控制,当接入RPFC后,线路电压的大小和相位对转子角度的灵敏范围不同,因此对线路有功和无功调节有不同的灵敏区域,RPFC可以在一定的圆形区域内实现对线路潮流的控制,其控制范围由RPFC能注入线路电压的最大变比决定。基于PSCAD/EMTDC的仿真结果,验证了对RPFC稳态模型和稳态特性分析的正确性以及RPFC对线路潮流控制的有效性和灵活性。展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
文摘旋转潮流控制器(rotary power flow controller,RPFC)应用到电力系统潮流控制中,具有控制方法简单、输出无谐波、可靠性高、成本低的优点,但目前对其模型和控制特性的研究还并不充分。为此,分析并建立了RPFC的稳态数学模型,对RPFC的稳态特性进行了研究,推出了RPFC注入线路电压与转子角之间的关系,分析了RPFC的潮流控制特性。RPFC注入线路的电压受转子角度的控制,当接入RPFC后,线路电压的大小和相位对转子角度的灵敏范围不同,因此对线路有功和无功调节有不同的灵敏区域,RPFC可以在一定的圆形区域内实现对线路潮流的控制,其控制范围由RPFC能注入线路电压的最大变比决定。基于PSCAD/EMTDC的仿真结果,验证了对RPFC稳态模型和稳态特性分析的正确性以及RPFC对线路潮流控制的有效性和灵活性。
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.