期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于稠密卷积网络的轴承故障诊断 被引量:4
1
作者 徐文学 夏懿 张德祥 《噪声与振动控制》 CSCD 2020年第4期80-86,共7页
轴承故障诊断非常依赖故障特征的提取,为了实现基于原始数据的更加直接的故障诊断,提出一种基于稠密卷积网络的轴承故障诊断方法。该方法首先将原始一维数据规范化,再输入到稠密块网络并结合softmax分类层来自适应学习轴承振动信号的有... 轴承故障诊断非常依赖故障特征的提取,为了实现基于原始数据的更加直接的故障诊断,提出一种基于稠密卷积网络的轴承故障诊断方法。该方法首先将原始一维数据规范化,再输入到稠密块网络并结合softmax分类层来自适应学习轴承振动信号的有效特征,进而实现分类。实验中运用西储大学所提供的轴承故障数据库测试了网络的有效性,并且与其他常用轴承故障诊断网络进行对比。研究结果表明所提网络对基于轴承振动数据的故障类型识别准确率明显优于其它网络,特别是针对混入一定噪声的故障数据,仍然可以达到较高的诊断精度,因此有不错的抗噪声性能。 展开更多
关键词 故障诊断 轴承 特征提取 稠密卷积网络 数据规范化
在线阅读 下载PDF
一种基于改进稠密卷积神经网络的表情识别方法 被引量:2
2
作者 戴沁璇 罗晓曙 +1 位作者 蒙志明 黄苑琴 《现代电子技术》 2022年第9期29-34,共6页
人的表情包含大量信息,可用于显示人的很多情感状态,例如疲劳和疼痛的表情等。卷积神经网络(CNN)是一种识别人脸表情的有效方法,它可以同时执行特征提取和分类,并可以自动发现数据中的多个表情特点。针对卷积神经网络参数大以及传统表... 人的表情包含大量信息,可用于显示人的很多情感状态,例如疲劳和疼痛的表情等。卷积神经网络(CNN)是一种识别人脸表情的有效方法,它可以同时执行特征提取和分类,并可以自动发现数据中的多个表情特点。针对卷积神经网络参数大以及传统表情识别方法准确率不高的问题,提出一种基于改进的稠密卷积神经网络的面部表情识别模型。首先通过使用Gabor滤波器初始化第一层卷积层;然后采用一种对数线性函数(LLU)进行网络优化,该模型中的特征重用和参数压缩技术提高了网络的学习能力,大大减少了模型参数;最后基于此模型设计了一个表情识别系统,该系统能够准确地识别照片上的表情和在线识别人脸表情。实验结果表明,该模型可以显著提高三个表情数据集的准确率,并能很好地识别人脸表情。 展开更多
关键词 人脸表情识别 改进稠密卷积神经网络 卷积层初始化 GABOR滤波器 激活函数 表情识别系统
在线阅读 下载PDF
基于互相关特征图和扩张稠密卷积网络的SFBC-OFDM识别方法 被引量:3
3
作者 张聿远 张立民 闫文君 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2657-2664,共8页
针对传统的空频分组码(space-frequency block code,SFBC)识别方法存在人工提取特征困难、低信噪比(signal tOnoise ratio,SNR)下识别准确率低和不适用于非协作通信的问题,提出一种基于互相关特征图和扩张稠密卷积网络的SFBC自动识别方... 针对传统的空频分组码(space-frequency block code,SFBC)识别方法存在人工提取特征困难、低信噪比(signal tOnoise ratio,SNR)下识别准确率低和不适用于非协作通信的问题,提出一种基于互相关特征图和扩张稠密卷积网络的SFBC自动识别方法。首先,计算接收端频域上的互相关函数并进行维度变换,得到二维互相关特征图。然后,对得到的特征图进行预处理以扩大卷积核感受的有效区域,去除图像冗余信息。最后,构建扩张稠密卷积网络以自动提取预处理图像特征,实现SFBC分类识别。仿真结果表明,SNR为-8 dB时,该方法对SFBC信号的识别准确率达到了96.1%。相比于传统算法,该方法具有更好的抗低SNR和特征自提取能力,验证了深度学习方法在SFBC识别领域的有效性,为该领域的后续研究奠定了基础。 展开更多
关键词 非协作通信 空频分组码 互相关特征图 图像预处理 深度学习 扩张稠密卷积网络
在线阅读 下载PDF
基于注意力机制和稠密卷积的视网膜微血管分割算法
4
作者 王素玉 董政伦 刘涵宇 《北京工业大学学报》 CAS CSCD 北大核心 2021年第5期500-507,共8页
为了解决糖尿病性视网膜病变诊断难、各地评判标准不统一的问题,提出了基于注意力机制和稠密卷积的视网膜微血管分割算法,即通过图像分割技术来辅助诊断,既减轻了工作量,又能保证准确率.以LadderNet为基础网络,为了更加突出微血管信息,... 为了解决糖尿病性视网膜病变诊断难、各地评判标准不统一的问题,提出了基于注意力机制和稠密卷积的视网膜微血管分割算法,即通过图像分割技术来辅助诊断,既减轻了工作量,又能保证准确率.以LadderNet为基础网络,为了更加突出微血管信息,加入注意力机制,使微血管的特征信息更加完整、准确地保留下来.使用稠密卷积在增强特征信息传递的同时减少参数数量,进一步提升图像分割性能.该算法具有更好的分割性能,能够更好地完成视网膜微血管分割任务. 展开更多
关键词 深度学习 医疗图像 视网膜微血管分割 LadderNet 注意力机制 稠密卷积
在线阅读 下载PDF
AConvLSTM U-Net:基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型
5
作者 李苏强 王周阳 +1 位作者 产思贤 周小龙 《南方医科大学学报》 北大核心 2025年第5期1082-1092,共11页
目的提出一种基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型(AConvLSTM U-Net),实现颌骨囊肿图像的准确自动分割。方法使用含有2592张颌骨囊肿图像数据集。首先,AConvLSTM U-Net在编码路径上设计移动翻转瓶颈卷积模块(MBC)以... 目的提出一种基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型(AConvLSTM U-Net),实现颌骨囊肿图像的准确自动分割。方法使用含有2592张颌骨囊肿图像数据集。首先,AConvLSTM U-Net在编码路径上设计移动翻转瓶颈卷积模块(MBC)以增强特征提取能力。其次,采用双路径稠密卷积(DPD)连接编码器和解码器,在跳跃连接中引入双向ConvLSTM以获取丰富的语义信息。然后,解码路径上使用基于空间和通道注意力的解码块(scSE),以提升对重要信息的关注。最后,设计了全尺寸深度监督模块(DS),并结合联合损失函数对模型进行优化,以进一步提高分割精度。结果AConvLSTM U-Net在颌骨囊肿病灶分割的实验结果在MCC、DSC和JSC方面分别达到93.8443%、93.9067%、88.5133%,性能均优于所有被比较的分割模型。结论所提出的算法在颌骨囊肿数据集上表现出较高的准确性与鲁棒性,优于多种主流方法,展现了AConvLSTM U-Net在颌骨囊肿图像分割的优越性能和辅助诊断的巨大潜力。 展开更多
关键词 注意力机制 多尺度颌骨囊肿分割模型 稠密卷积
在线阅读 下载PDF
类别标签辅助改进稠密网络的变工况轴承故障诊断 被引量:4
6
作者 孙洁娣 刘保 +3 位作者 温江涛 时培明 闫盛楠 肖启阳 《振动与冲击》 EI CSCD 北大核心 2022年第17期204-212,共9页
基于数据驱动的滚动轴承智能故障诊断得到广泛研究,但多数研究中均假设训练数据与测试数据同分布,考虑到旋转机械实际运转中复杂多变的工况往往导致数据分布产生偏差,使得识别方法的通用性差、实际识别效果不佳。将域适应引入轴承故障... 基于数据驱动的滚动轴承智能故障诊断得到广泛研究,但多数研究中均假设训练数据与测试数据同分布,考虑到旋转机械实际运转中复杂多变的工况往往导致数据分布产生偏差,使得识别方法的通用性差、实际识别效果不佳。将域适应引入轴承故障诊断过程中,基于迁移学习提出了一种特征空间域和标签概率分布同步适应的迁移学习网络。该网络将一维稠密卷积网络及注意力机制融合实现复杂故障特征的自动提取;域适应处理通过联合最小化特征概率分布差异和标签概率分布差异来约束网络学习域不变特征;最终对变工况滚动轴承故障实现了高准确度的识别。实验结果表明了该方法的可行性及良好的性能。 展开更多
关键词 轴承故障诊断 变工况 稠密卷积网络 注意力机制 类别标签辅助
在线阅读 下载PDF
卷积神经网络物体检测算法在物流仓库中的应用 被引量:15
7
作者 李天剑 黄斌 +1 位作者 刘江玉 金秋 《计算机工程》 CAS CSCD 北大核心 2018年第6期176-181,共6页
针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注... 针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注的托盘数据库进行训练和测试。在测试阶段,结合不同分辨率的多尺度特征图,以增强网络对被检测物体的适应能力,并使用单一网络实现检测任务。实验结果表明,与YOLO算法相比,该算法检测准确率提高了6.1%。 展开更多
关键词 物体检测 托盘检测 卷积神经网路 深度学习 稠密连接卷积神经网络
在线阅读 下载PDF
改进稠密块轻量化神经网络的管道泄漏孔径识别 被引量:10
8
作者 孙洁娣 王利轩 +1 位作者 温江涛 肖启阳 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期98-108,共11页
深度神经网络的管道泄漏孔径识别方法虽然识别率高,但因结构复杂造成参数量大、内存占用大,极大地限制了其在资源有限的工业环境及实时处理中的应用。提出一种优化卷积改进稠密块的轻量化神经网络用于管道泄漏孔径识别。首先将深度可分... 深度神经网络的管道泄漏孔径识别方法虽然识别率高,但因结构复杂造成参数量大、内存占用大,极大地限制了其在资源有限的工业环境及实时处理中的应用。提出一种优化卷积改进稠密块的轻量化神经网络用于管道泄漏孔径识别。首先将深度可分离卷积与异构卷积结合,构造了新的多卷积稠密块实现泄漏信号的特征提取;之后采用卷积注意力机制对特征进行权重划分,实现特征的重要性区分;最后通过分类器获取结果。实验结果表明,本文方法识别准确率达到了96.59%,参数量仅为781 KB。本文方法在保证高识别准确率的同时,参数量及浮点数大幅下降,训练时间也有所减少,改善了实时响应能力,对于实际工业监测应用有指导意义。 展开更多
关键词 管道泄漏孔径识别 轻量级网络 深度可分离卷积 异构卷积 卷积稠密
在线阅读 下载PDF
稠密自适应生成对抗网络的爨体字风格迁移模型 被引量:4
9
作者 姚伟健 赵征鹏 +3 位作者 普园媛 徐丹 钱文华 吴昊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期915-924,共10页
爨体字作为典型的衬线字体,不同于黑体、微软雅黑、等线这些非衬线字体,其字形结构十分多样.为了防止爨体字在生成过程中笔画弯折处出现伪影和模糊的现象,提出一种基于稠密自适应生成对抗网络的爨体字风格迁移模型.首先,生成器通过稠密... 爨体字作为典型的衬线字体,不同于黑体、微软雅黑、等线这些非衬线字体,其字形结构十分多样.为了防止爨体字在生成过程中笔画弯折处出现伪影和模糊的现象,提出一种基于稠密自适应生成对抗网络的爨体字风格迁移模型.首先,生成器通过稠密自适应卷积块更加充分地提取风格特征和内容特征;然后,像素判别器对真实图片和生成图片进行分辨;再采用对抗损失、迁移损失、梯度损失和边缘损失对生成网络进行参数调节;最后,将自行采集的爨体字数据集作为训练集送入模型进行训练.实验结果证明,所提模型能够有效地学习到风格特征,达到更好的生成效果;其生成结果在字形大小保持上优于Zi-to-zi模型,在笔画细节特征的保留上优于StarGANv2以及CycleGAN模型,并在SSIM和L1 loss指标上得到了验证. 展开更多
关键词 爨体字 衬线字体 风格迁移 生成对抗网络 稠密自适应卷积 边缘损失
在线阅读 下载PDF
DenseNet-centercrop:一个用于肺结节分类的卷积网络 被引量:6
10
作者 刘一璟 张旭斌 +3 位作者 张建伟 周哲磊 冯元力 陈为 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期20-26,共7页
为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了Den... 为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了DenseNet的结构,而且将其稠密连接机制扩展到了稠密块水平,大大丰富了肺结节的多尺度特征。(2)参数量较少,是一种轻量化的网络结构。将基于该网络的肺结节良恶性分类方法在LIDC-IDRI数据集上进行评估,实验结果表明,DenseNet-centercrop极大地提高了DenseNet的性能,较现有的其他肺结节良恶性分类方法具有更高的AUC分值和分类精度。 展开更多
关键词 肺结节分类 电子计算机断层扫描图像 稠密连接卷积网络
在线阅读 下载PDF
嵌套网络模型下的相似图像检索方法 被引量:2
11
作者 倪翠 王朋 +1 位作者 朱元汀 张东 《应用科学学报》 CAS CSCD 北大核心 2022年第3期400-410,共11页
对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优... 对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优化特征提取模块,从而提高图像检索的准确率。在整个深度学习的过程中,给图像特征通道设置合理的权值,抑制图像中的无效特征,能够进一步提高图像的检索速度。实验结果表明,所提算法能够加强图像有效特征的传递,无论从精度和速度方面均可得到较好的图像检索结果。 展开更多
关键词 稠密卷积网络 压缩和激励网络 嵌套 抑制无效特征 图像检索
在线阅读 下载PDF
基于多尺度特征损失函数的图像超分辨率重建 被引量:10
12
作者 徐亮 符冉迪 +2 位作者 金炜 唐彪 王尚丽 《光电工程》 CAS CSCD 北大核心 2019年第11期1-9,共9页
在图像超分辨率重建问题中,许多基于深度学习的方法大多采用传统的均方误差(MSE)作为损失函数,重建后的图像容易出现细节模糊和过于平滑的问题。针对这一问题,本文对传统的均方误差损失函数进行改进,提出一种基于多尺度特征损失函数的... 在图像超分辨率重建问题中,许多基于深度学习的方法大多采用传统的均方误差(MSE)作为损失函数,重建后的图像容易出现细节模糊和过于平滑的问题。针对这一问题,本文对传统的均方误差损失函数进行改进,提出一种基于多尺度特征损失函数的图像超分辨率重建方法。整个网络模型由基于DenseNet的重建模型和一个用来优化多尺度特征损失函数的卷积神经网络串联构成。将重建后得到的图像和对应的原始高清图像作为串联的卷积神经网络的输入,计算重建图像卷积得到的不同尺度特征图与对应的原始高清图像卷积得到的不同尺度特征图的均方误差。实验结果表明,本文提出的方法在主观视觉效果和PSRN、SSIM上均有所提升。 展开更多
关键词 图像超分辨率重建 稠密卷积神经网络 多尺度特征损失函数 深度学习
在线阅读 下载PDF
基于自注意力机制的干扰信号检测识别 被引量:10
13
作者 王瑞东 王世练 +1 位作者 张炜 张彦龙 《电讯技术》 北大核心 2023年第6期790-797,共8页
为了解决卫星通信系统在对抗电磁环境中的干扰实时检测识别问题,提出了一种基于自注意力(Self-attention,SA)机制的高效轻量化网络模型。通过采用DenseNet加速对原始IQ信号的特征提取,并引入自注意力模块代替参数量较大的多重卷积层,实... 为了解决卫星通信系统在对抗电磁环境中的干扰实时检测识别问题,提出了一种基于自注意力(Self-attention,SA)机制的高效轻量化网络模型。通过采用DenseNet加速对原始IQ信号的特征提取,并引入自注意力模块代替参数量较大的多重卷积层,实现对卫星通信系统中常见的干扰样式进行分类识别。仿真结果表明,在识别准确率方面达到常规的神经网络模型和算法性能水平的条件下,所提模型在网络复杂度和运算时延方面得到有效压缩。 展开更多
关键词 卫星通信系统 干扰信号检测 自注意力机制 稠密卷积网络 轻量级模型
在线阅读 下载PDF
基于并行LSTM-CNN的化工过程故障检测 被引量:6
14
作者 肖飞扬 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期382-390,共9页
为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolu... 为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE(Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。 展开更多
关键词 故障检测 一维稠密卷积神经网络 长短时记忆网络 互信息 TE过程
在线阅读 下载PDF
基于注意力机制编码器-解码器的手写数学公式识别模型 被引量:3
15
作者 陈路 陈道喜 +1 位作者 陆一鸣 陆卫忠 《计算机应用》 CSCD 北大核心 2023年第4期1297-1302,共6页
针对现有的手写数学公式识别(HMER)方法经过卷积神经网络(CNN)多次池化后,图像分辨率降低、特征信息丢失,从而引起解析错误的问题,提出基于注意力机制编码器-解码器的HMER模型。首先,采用稠密卷积网络(DenseNet)作为编码器,使用稠密连... 针对现有的手写数学公式识别(HMER)方法经过卷积神经网络(CNN)多次池化后,图像分辨率降低、特征信息丢失,从而引起解析错误的问题,提出基于注意力机制编码器-解码器的HMER模型。首先,采用稠密卷积网络(DenseNet)作为编码器,使用稠密连接加强特征提取,促进梯度传播,并缓解梯度消失;其次,采用门控循环单元(GRU)作为解码器,并引入注意力机制,将注意力分配到图像的不同区域,从而准确地实现符号识别和结构分析;最后,对手写数学公式图像进行编码,将编码结果解码为LaTeX序列。在在线手写数学公式识别竞赛(CROHME)数据集上的实验结果表明,所提模型的识别率提升到40.39%,而在3个级别的允许误差范围内,识别率分别提升到52.74%、58.82%和62.98%。相较于双向长短期记忆(BLSTM)网络模型,所提模型的识别率提高了3.17个百分点;而在3个级别的允许误差范围内,识别率分别提高了8.52、11.56和12.78个百分点。可见,所提模型能够准确地解析手写数学公式图像,生成LaTeX序列,提升识别率。 展开更多
关键词 手写数学公式识别 编码器-解码器 稠密卷积网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于改进YOLOv3的列车运行环境图像小目标检测算法 被引量:2
16
作者 梁美佳 刘昕武 胡晓鹏 《计算机应用》 CSCD 北大核心 2023年第8期2611-2618,共8页
列车辅助驾驶离不开对列车运行环境的实时检测,而列车运行环境图像存在丰富的小目标。与大中型目标相比,目标占原图比例小于1%的小目标由于分辨率低而存在误检率高、检测精度较差的问题,因此提出一种基于改进YOLOv3的列车运行环境目标... 列车辅助驾驶离不开对列车运行环境的实时检测,而列车运行环境图像存在丰富的小目标。与大中型目标相比,目标占原图比例小于1%的小目标由于分辨率低而存在误检率高、检测精度较差的问题,因此提出一种基于改进YOLOv3的列车运行环境目标检测算法YOLOv3-TOEI (YOLOv3-Train Operating Environment Image)。首先,利用k-means聚类算法优化anchor,从而提高网络的收敛速度;然后,在DarkNet-53中嵌入空洞卷积以增大感受野,并引入稠密卷积网络(DenseNet)获取更丰富的图像底层细节信息;最后,将原始YOLOv3的单向特征融合结构改进为双向自适应特征融合结构,从而实现深浅层特征的有效结合,并提高网络对多尺度目标(特别是小目标)的检测效果。实验结果表明,与原YOLOv3算法相比,YOLOv3-TOEI算法的平均精度均值(mAP)@0.5达到84.5%,提升了12.2%,每秒传输帧数(FPS)为83,拥有更好的列车运行环境图像小目标检测能力。 展开更多
关键词 列车辅助驾驶 小目标检测 空洞卷积 稠密卷积网络 特征融合 通道注意力机制
在线阅读 下载PDF
基于DenseNet-BC网络的皮肤镜下皮肤损伤分割 被引量:9
17
作者 齐永锋 侯璐璐 段友放 《计算机工程与科学》 CSCD 北大核心 2020年第6期1060-1067,共8页
针对皮肤病变图像边界分割不准确的问题,提出了一种改进的稠密卷积网络(DenseNet-BC)皮肤损伤分割算法。首先,改变传统算法层与层之间的连接方式,通过密集连接使得所有层都能直接访问从原始输入信号到损失函数的梯度,让图像特征信息得... 针对皮肤病变图像边界分割不准确的问题,提出了一种改进的稠密卷积网络(DenseNet-BC)皮肤损伤分割算法。首先,改变传统算法层与层之间的连接方式,通过密集连接使得所有层都能直接访问从原始输入信号到损失函数的梯度,让图像特征信息得到最大化的流动。其次,为降低参数数量与网络的计算量,在瓶颈层和过渡层中采用小卷积核对输入特征图的通道数进行减半操作。将DenseNet-BC算法与VGG-16、Inception-v3以及ResNet-50等算法在ISIC 2018 Task 1皮肤病变分割数据集上进行性能比较。实验结果表明,DenseNet-BC算法的病变分割准确率为0.975,Threshold Jaccard为0.835,分割准确率较其他算法提升显著,是一种有效的皮损分割算法。 展开更多
关键词 皮肤镜图像 皮损分割 深度学习 稠密卷积网络
在线阅读 下载PDF
U-net改进的视网膜血管图像分割算法 被引量:9
18
作者 王原 马瑜 +3 位作者 江妍 梁远哲 马鼎 李霞 《计算机工程与设计》 北大核心 2021年第10期2884-2893,共10页
传统抽取算法在病灶、细节区域存在分割不精准的问题。改进算法对U-net深度神经网络进行改进,在网络底层加入Dense-net网络中的稠密连接方式,使用BConvLSTM来组合编码器和解码器的特征信息,结合AC-net思想提出MultiAc模块,在U-net下采... 传统抽取算法在病灶、细节区域存在分割不精准的问题。改进算法对U-net深度神经网络进行改进,在网络底层加入Dense-net网络中的稠密连接方式,使用BConvLSTM来组合编码器和解码器的特征信息,结合AC-net思想提出MultiAc模块,在U-net下采样和上采样过程加入该模块,帮助网络学习更复杂的特征信息,在预测过程中提高精确率。通过在DRIVE、STARE、CHASE_DB1这3个公开眼底数据库的实验,分割结果的客观评价指标与主观视觉验证了改进算法在分割精度方面的有效性。 展开更多
关键词 视网膜血管提取 U型网络 稠密卷积网络 双向卷积长短时记忆网络 不对称卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部