期刊文献+

类别标签辅助改进稠密网络的变工况轴承故障诊断 被引量:4

Fault diagnosis of variable condition bearing based on improved dense network aided by class labels
在线阅读 下载PDF
导出
摘要 基于数据驱动的滚动轴承智能故障诊断得到广泛研究,但多数研究中均假设训练数据与测试数据同分布,考虑到旋转机械实际运转中复杂多变的工况往往导致数据分布产生偏差,使得识别方法的通用性差、实际识别效果不佳。将域适应引入轴承故障诊断过程中,基于迁移学习提出了一种特征空间域和标签概率分布同步适应的迁移学习网络。该网络将一维稠密卷积网络及注意力机制融合实现复杂故障特征的自动提取;域适应处理通过联合最小化特征概率分布差异和标签概率分布差异来约束网络学习域不变特征;最终对变工况滚动轴承故障实现了高准确度的识别。实验结果表明了该方法的可行性及良好的性能。 Intelligent fault diagnosis of rolling bearing based on data-driven has been widely studied,but most studies assume that training data and test data are distributed in the same way.Complex and changeable working conditions in actual operation of rotating machinery often cause data distribution having deviations to make the universality of the identification method poor and the actual identification effect not good.Here,domain adaptation was introduced into bearing fault diagnosis process.Based on migration learning,a migration learning network with synchronous adaptation of feature space domain and label probability distribution was proposed.The network could integrate one-dimensional dense convolution network and attention mechanism to realize automatic extraction of complex fault features.Domain adaptation constrains invariant features of network learning domain by jointly minimizing feature probability distribution difference and label probability distribution difference.Finally,high accuracy identification was realized for faults of rolling bearing under variable working conditions.Test results showed that the proposed method has the feasibility and good performance.
作者 孙洁娣 刘保 温江涛 时培明 闫盛楠 肖启阳 SUN Jiedi;LIU Bao;WEN Jiangtao;SHI Peiming;YAN Shengnan;XIAO Qiyang(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China;Hebei Key Laboratory of Information Transmission and Signal Processing,Yanshan University,Qinhuangdao 066004,China;Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University,Qinhuangdao 066004,China;School of Artificial Intelligence,Henan University,Zhengzhou 475000,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第17期204-212,共9页 Journal of Vibration and Shock
基金 国家自然科学基金(61973262) 河北省自然科学基金(E2020203061) 河北省高等学校科学技术研究项目(QN2019133) 河北省重点实验室项目(202250701010046) 河南省青年人才托举计划(2021HYTP014)。
关键词 轴承故障诊断 变工况 稠密卷积网络 注意力机制 类别标签辅助 bearing fault diagnosis variable working condition dense convolution network attention mechanism class labels aided
作者简介 第一作者:孙洁娣,女,博士,教授,1975年生。
  • 相关文献

参考文献8

二级参考文献118

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献928

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部