期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
自适应梯度稀疏化的深度神经网络训练方法
1
作者 黄新利 高国举 《计算机科学》 北大核心 2025年第S2期700-705,共6页
具有误差补偿的Top-k稀疏化方法目前是分布式深度神经网络(DNNs)训练中最先进的技术之一,它在每次迭代训练中动态传输部分梯度来减少通信量,传输的梯度总量取决于k值的选择。虽然较小的k值可以加速训练,但即使在有误差补偿的情况下,也... 具有误差补偿的Top-k稀疏化方法目前是分布式深度神经网络(DNNs)训练中最先进的技术之一,它在每次迭代训练中动态传输部分梯度来减少通信量,传输的梯度总量取决于k值的选择。虽然较小的k值可以加速训练,但即使在有误差补偿的情况下,也可能降低测试准确性。本文提出了AdaTopK——一种自适应Top-k压缩器,它可以通过动态调整k值来权衡训练速度和测试准确性。大量动态网络场景下的实验表明:与不压缩的情况相比,AdaTopK可以减少29%的训练时间;同时与已有实验DC2相比,AdaTopK也可以减少15%的训练时间。 展开更多
关键词 分布式训练 网络压缩 稀疏 深度神经网络 误差补偿
在线阅读 下载PDF
融合稀疏八叉树与卷积神经网络的汽车风阻系数预测 被引量:2
2
作者 王刚 张瑞昊 +2 位作者 刘学龙 袁海东 韩旭 《计算力学学报》 CAS CSCD 北大核心 2024年第1期58-65,共8页
针对汽车风阻系数预测研究中参数化方法难以准确表征汽车外造型的难题,提出融合稀疏八叉树与卷积神经网络的汽车风阻系数预测方法。将汽车外造型按照八叉树结构离散,使用平均法向量对离散的复杂曲面进行简化,利用卷积神经网络对八叉树... 针对汽车风阻系数预测研究中参数化方法难以准确表征汽车外造型的难题,提出融合稀疏八叉树与卷积神经网络的汽车风阻系数预测方法。将汽车外造型按照八叉树结构离散,使用平均法向量对离散的复杂曲面进行简化,利用卷积神经网络对八叉树形式的汽车外造型进行特征提取,进而对汽车风阻系数进行快速预测。通过改变卷积层数与全连接层数,研究了不同卷积神经网络结构对风阻系数预测精度的影响。与参数化方法相比,本文提出的外造型表示方法能更好地描述模型细节,构建的卷积神经网络结构对风阻系数预测的最小相对误差为1.453%,且计算速度是CFD仿真的1620倍,具有较高的精度及计算效率。 展开更多
关键词 风阻系数 深度学习 稀疏八叉树 卷积神经网络 汽车
在线阅读 下载PDF
稀疏自编码深度神经网络及其在滚动轴承故障诊断中的应用 被引量:28
3
作者 汤芳 刘义伦 龙慧 《机械科学与技术》 CSCD 北大核心 2018年第3期352-357,共6页
针对目前滚动轴承故障诊断主要采用监督式学习提取故障特征的现状,提出了一种基于稀疏自编码的深度神经网络,实现非监督学习自动提取滚动轴承振动信号的内在特征用于滚动轴承故障诊断。首先,将轴承故障振动信号的频谱训练稀疏自编码获... 针对目前滚动轴承故障诊断主要采用监督式学习提取故障特征的现状,提出了一种基于稀疏自编码的深度神经网络,实现非监督学习自动提取滚动轴承振动信号的内在特征用于滚动轴承故障诊断。首先,将轴承故障振动信号的频谱训练稀疏自编码获得参数;然后用稀疏自编码获得的参数和轴承振动信号频谱的频谱训练深度神经网络,并结合反向传播算法对深度神经网络进行整体微调提高分类准确度;最后用训练好的深度神经网络来识别滚动轴承故障。对正常轴承、外圈点蚀故障、内圈点蚀故障和滚动体裂纹故障振动信号的分析结果表明:相比反向传播神经网络,提出的深度神经网络更能准确的识别滚动轴承故障类型。 展开更多
关键词 稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
4
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
利用稀疏语义结合双层深度卷积神经网络的敏感图像检测方法 被引量:2
5
作者 如先姑力·阿布都热西提 亚森·艾则孜 孙国梓 《计算机应用研究》 CSCD 北大核心 2020年第5期1557-1560,1565,共5页
互联网技术的飞速发展导致敏感内容图像由原先基本隐蔽的内容交换变为海量的数据共享,传统基于图像特征提取的敏感内容检测方法不再适用。针对上述难点,提出基于稀疏语义和双层深度卷积神经网络相结合的敏感内容检测方法。上层网络首先... 互联网技术的飞速发展导致敏感内容图像由原先基本隐蔽的内容交换变为海量的数据共享,传统基于图像特征提取的敏感内容检测方法不再适用。针对上述难点,提出基于稀疏语义和双层深度卷积神经网络相结合的敏感内容检测方法。上层网络首先进行训练样本的预处理,并通过构造图像的稀疏语义表示作为神经网络的输入;而下层网络则进一步考虑第三方管控机制(如政府代理等),提出针对特定群体的敏感内容图像检测方法。与现有常用敏感内容图像检测方法相比,该检测方法可有效降低训练样本数量,且检测精度比传统图像检测方法(如基于视觉词袋方法等)提升7%以上。 展开更多
关键词 敏感图像内容检测 双层卷积神经网络 深度学习算法 稀疏语义表示 视觉词袋 皮肤检测器
在线阅读 下载PDF
栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断 被引量:18
6
作者 陈仁祥 杨星 +3 位作者 杨黎霞 王家序 徐向阳 陈思杨 《振动与冲击》 EI CSCD 北大核心 2017年第21期125-131,137,共8页
针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀... 针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀疏项限制和加噪编码融入自编码网络,同时将自编码网络堆栈并添加分类层,构建出栈式稀疏加噪自编码深度神经网络,进行轴承损伤特征非监督自动提取与损伤程度智能诊断。稀疏项限制和深度神经网络的构建提高了特征学习能力,加噪编码的融入改善了网络的鲁棒性。所构建深度神经网络通过多层无监督逐层自学习和有监督微调,完成损伤特征自动提取与表达,并实现了损伤程度智能诊断。不同工况下轴承损伤程度诊断的实验验证证明了所提方法的可行性和有效性。 展开更多
关键词 滚动轴承 损伤程度 稀疏加噪自编码 深度神经网络 诊断
在线阅读 下载PDF
基于稀疏深度神经网络的电磁信号调制识别 被引量:6
7
作者 杨小蒙 张涛 +1 位作者 庄建军 唐震 《电讯技术》 北大核心 2023年第2期151-157,共7页
为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达... 为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。 展开更多
关键词 电磁信号 调制识别 星座图 稀疏深度神经网络(sdnn)
在线阅读 下载PDF
基于深度卷积神经网络的稀疏反褶积方法 被引量:3
8
作者 张联海 王璐 +1 位作者 郑志超 孟凡顺 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第12期81-88,共8页
本文提出一个由数据驱动的深度卷积神经网络(DCNN)模型用于求解地震反射信号的稀疏反褶积问题。反褶积是一个不适定的反问题,正则化迭代方法是求解此类问题的主要方法,但是正则化迭代方法存在正则化参数选取困难,反演结果不精确等问题... 本文提出一个由数据驱动的深度卷积神经网络(DCNN)模型用于求解地震反射信号的稀疏反褶积问题。反褶积是一个不适定的反问题,正则化迭代方法是求解此类问题的主要方法,但是正则化迭代方法存在正则化参数选取困难,反演结果不精确等问题。为此,本文提出DCNN方法求解地震反射信号的稀疏反褶积问题,经过训练的DCNN模型无需再次设置参数即可用于求解稀疏反褶积问题,计算速度快,结果精度高。所提DCNN模型还采用多分辨率分解和残差学习等技术以提高网络的表达能力。最后通过数值实验,并与迭代收缩阈值算法(ISTA)算法对比,使用模拟地震数据和实际地震数据验证了DCNN方法求解稀疏反褶积问题的有效性。 展开更多
关键词 稀疏反褶积 反问题 深度卷积神经网络 迭代收缩阈值算法
在线阅读 下载PDF
基于深度神经网络融合稀疏分组lasso的预测模型研究 被引量:4
9
作者 卢宇红 宋佳丽 +1 位作者 王萌 侯艳 《中国卫生统计》 CSCD 北大核心 2021年第6期821-827,共7页
目的探索深度神经网络(DNN)联合不同正则化方法后模型预测准确性的差异;探索模型预测准确性较高时的样本特征规律。方法 R软件产生不同分组、不同样本量的模拟数据集,在不同数据特征下比较DNN模型及融合正则化后模型的预测能力。通过真... 目的探索深度神经网络(DNN)联合不同正则化方法后模型预测准确性的差异;探索模型预测准确性较高时的样本特征规律。方法 R软件产生不同分组、不同样本量的模拟数据集,在不同数据特征下比较DNN模型及融合正则化后模型的预测能力。通过真实数据分析进一步评价两种模型的预测能力。结果 DNN融合不同正则化方法的结果均优于单纯DNN模型,其中DNN融合稀疏分组lasso(SDP)效果最好。稀疏组别组内变量个数的大小及样本量会影响预测准确性,组内变量个数≥8,样本量≥700时,SDP模型预测准确性较高。结论与单纯DNN模型相比,SDP模型预测准确性得到显著改善;考虑不同样本量和分组方式的情况,SDP模型的预测能力均有明显提高,并且其对预测相关重要特征的提取较为准确。在实际案例分析中发现在小样本的高维组学数据中,SDP模型预测准确性和防止过拟合的能力均有明显提升。 展开更多
关键词 深度神经网络 正则化 稀疏分组lasso 高维组学 预测模型
在线阅读 下载PDF
基于多尺度特征融合预处理与深度稀疏网络的并行磁共振成像重建
10
作者 薛磊 段继忠 《数据采集与处理》 北大核心 2025年第4期1082-1095,共14页
磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利... 磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利用多个接收线圈同时采集多个数据通道来加速成像过程的技术。深度学习凭借其强大的特征提取和模式识别能力,在欠采样MRI重建中展现出巨大的潜力。为克服现有技术的局限性(如需要自动校准信号、重建不稳定等),提出了一种创新的重建方法,旨在从欠采样的k空间数据中高效、准确地重建高质量的并行磁共振图像。该方法的核心骨架为深度稀疏网络,该网络通过将求解稀疏模型的迭代收缩阈值算法的迭代过程展开,转化为深度神经网络框架内的一系列可训练层。另外,还引入基于多尺度特征融合的自适应预处理模块,通过融合普通卷积与异型卷积核,进一步提升网络的稀疏表示能力。实验结果表明,相较于其他先进方法,本文提出的方法在多个数据集上均表现出更优的重建性能,包括更高的峰值信噪比和结构相似性指数,以及更低的高频误差范数。 展开更多
关键词 并行磁共振成像重建 深度学习 卷积神经网络 深度稀疏网络 多尺度特征融合
在线阅读 下载PDF
基于SCADA数据分析和稀疏自编码神经网络的风电机组在线运行状态监测 被引量:41
11
作者 金晓航 许壮伟 +1 位作者 孙毅 单继宏 《太阳能学报》 EI CAS CSCD 北大核心 2021年第6期321-328,共8页
通过融合稀疏自编码器和深度神经网络算法,提出一种基于SCADA数据的风电机组在线运行状态监测方法。首先,通过稀疏自编码器学习SCADA高维数据中复杂的内在特征,得到数据的降维表示;其次,基于降维后的数据利用深度神经网络预测风电机组... 通过融合稀疏自编码器和深度神经网络算法,提出一种基于SCADA数据的风电机组在线运行状态监测方法。首先,通过稀疏自编码器学习SCADA高维数据中复杂的内在特征,得到数据的降维表示;其次,基于降维后的数据利用深度神经网络预测风电机组的有功功率,通过对比分析预测功率与实际功率之间的残差判断风电机组的运行状态;最后,利用某风电机组近一年半的SCADA数据,对所提方法进行验证分析,结果表明,所提方法提早5天检测出风电机组发电机的异常情况,为有效避免故障恶化引发的突然停机、降低运维成本、提高风电能源的竞争力提供技术支持和保障。 展开更多
关键词 风电机组 状态监测 深度神经网络 稀疏自编码器 数据采集与监控系统
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:21
12
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
在线阅读 下载PDF
基于稀疏正则化的卷积神经网络模型剪枝方法 被引量:18
13
作者 韦越 陈世超 +1 位作者 朱凤华 熊刚 《计算机工程》 CAS CSCD 北大核心 2021年第10期61-66,共6页
现有卷积神经网络模型剪枝方法仅依靠自身参数信息难以准确评估参数重要性,容易造成参数误剪且影响网络模型整体性能。提出一种改进的卷积神经网络模型剪枝方法,通过对卷积神经网络模型进行稀疏正则化训练,得到参数较稀疏的深度卷积神... 现有卷积神经网络模型剪枝方法仅依靠自身参数信息难以准确评估参数重要性,容易造成参数误剪且影响网络模型整体性能。提出一种改进的卷积神经网络模型剪枝方法,通过对卷积神经网络模型进行稀疏正则化训练,得到参数较稀疏的深度卷积神经网络模型,并结合卷积层和BN层的稀疏性进行结构化剪枝去除冗余滤波器。在CIFAR-10、CIFAR-100和SVHN数据集上的实验结果表明,该方法能有效压缩网络模型规模并降低计算复杂度,尤其在SVHN数据集上,压缩后的VGG-16网络模型在参数量和浮点运算量分别减少97.3%和91.2%的情况下,图像分类准确率仅损失了0.57个百分点。 展开更多
关键词 深度学习 模型剪枝 卷积神经网络 稀疏约束 模型压缩
在线阅读 下载PDF
深度神经网络的自适应联合压缩方法 被引量:5
14
作者 姚博文 彭喜元 +2 位作者 于希明 刘连胜 彭宇 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第5期21-32,共12页
现有模式单一且固定的深度神经网络压缩方法受限于精度损失,而难以对模型进行充分压缩,致使压缩后模型在实际部署时仍需消耗大量成本高昂且容量有限的存储资源,对其在边缘端的实际应用造成严峻挑战。针对该问题,本文提出一种可同时对模... 现有模式单一且固定的深度神经网络压缩方法受限于精度损失,而难以对模型进行充分压缩,致使压缩后模型在实际部署时仍需消耗大量成本高昂且容量有限的存储资源,对其在边缘端的实际应用造成严峻挑战。针对该问题,本文提出一种可同时对模型连接结构和权重位宽进行自适应联合优化的压缩方法。与已有组合式压缩不同,本文充分融合稀疏化和量化方法进行联合压缩训练,从而全面降低模型规模;采用层级自适应的稀疏度和数据表征位宽,缓解因固定压缩比导致的精度次优化问题。通过使用本文提出方法对VGG、ResNet和MobileNet在CIFAR-10数据集上的实验表明,精度损失分别为1.3%、2.4%和0.9%时,参数压缩率达到了143.0×、151.6×和19.7×;与12种典型压缩方法相比,模型存储资源的消耗降低了15.3×~148.5×。此外,在自建的遥感图像数据集上,该方法仍能在达到最高284.2×压缩率的同时保证精度损失不超过1.2%。 展开更多
关键词 深度神经网络 模型压缩 联合优化 稀疏 量化
在线阅读 下载PDF
联合稀疏非负矩阵分解和神经网络的语音增强 被引量:10
15
作者 时文华 倪永婧 +3 位作者 张雄伟 邹霞 孙蒙 闵刚 《计算机研究与发展》 EI CSCD 北大核心 2018年第11期2430-2438,共9页
针对基于非负矩阵分解(non-negative matrix factorization,NMF)的语音增强方法在低信噪比部分和无结构特征的清音部分会引入失真这一问题,利用语音信号在时频域呈现的稀疏特性和深度神经网络在语音增强应用中表现出的谱重构特性,提出... 针对基于非负矩阵分解(non-negative matrix factorization,NMF)的语音增强方法在低信噪比部分和无结构特征的清音部分会引入失真这一问题,利用语音信号在时频域呈现的稀疏特性和深度神经网络在语音增强应用中表现出的谱重构特性,提出了一种联合稀疏非负矩阵分解和深度神经网络的单通道语音增强方法.首先对带噪语音的幅度谱进行非负矩阵分解得到与语音字典和噪声字典相对应的稀疏编码矩阵,其中语音字典和噪声字典通过对纯净语音和噪声进行训练预先得到,以维纳滤波方法恢复出语音成分的主要结构;然后利用深度神经网络在语音增强中表现出的时频保持特性,通过深层网络学习经维纳滤波分离出的语音的对数幅度谱和理想纯净语音对数幅度谱之间的非线性映射函数,进而恢复出语音结构的缺失成分.实验结果表明:所提方法可以有效抑制噪声且较好地恢复出语音成分,在语音感知质量和对数谱失真性能评价指标上均优于基线方法. 展开更多
关键词 深度神经网络 字典学习 非负矩阵分解 语音增强 稀疏约束
在线阅读 下载PDF
基于稀疏滤波神经网络的智能调制识别 被引量:8
16
作者 李润东 李立忠 +2 位作者 李少谦 宋熙煜 何鹏 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第2期161-167,共7页
针对传统调制识别中特征提取依赖人工经验的问题,该文提出了一种基于抗噪预处理及稀疏滤波卷积神经网络的智能通信调制识别算法。该算法将调制信号的循环谱作为卷积神经网络的输入图像,并引入低秩表示算法去除循环谱图中的噪声及干扰。... 针对传统调制识别中特征提取依赖人工经验的问题,该文提出了一种基于抗噪预处理及稀疏滤波卷积神经网络的智能通信调制识别算法。该算法将调制信号的循环谱作为卷积神经网络的输入图像,并引入低秩表示算法去除循环谱图中的噪声及干扰。在有监督训练卷积神经网络之前,该文设计了一种新型的稀疏滤波准则对网络进行无监督的逐层预训练,从而提升了泛化性能。仿真表明算法在信噪比为0 dB时仍可达94.2%的识别准确率,优于传统方法及相关深度学习方法。 展开更多
关键词 卷积神经网络 深度学习 低秩表示 调制识别 稀疏滤波
在线阅读 下载PDF
一种高效的稀疏卷积神经网络加速器的设计与实现 被引量:2
17
作者 余成宇 李志远 +1 位作者 毛文宇 鲁华祥 《智能系统学报》 CSCD 北大核心 2020年第2期323-333,共11页
针对卷积神经网络计算硬件化实现困难的问题,之前大部分卷积神经网络加速器的设计都集中于解决计算性能和带宽瓶颈,忽视了卷积神经网络稀疏性对加速器设计的重要意义,近来少量的能够利用稀疏性的卷积神经网络加速器设计也往往难以同时... 针对卷积神经网络计算硬件化实现困难的问题,之前大部分卷积神经网络加速器的设计都集中于解决计算性能和带宽瓶颈,忽视了卷积神经网络稀疏性对加速器设计的重要意义,近来少量的能够利用稀疏性的卷积神经网络加速器设计也往往难以同时兼顾计算灵活度、并行效率和资源开销。本文首先比较了不同并行展开方式对利用稀疏性的影响,分析了利用稀疏性的不同方法,然后提出了一种能够利用激活稀疏性加速卷积神经网络计算的同时,相比于同领域其他设计,并行效率更高、额外资源开销更小的并行展开方法,最后完成了这种卷积神经网络加速器的设计并在FPGA上实现。研究结果表明:运行VGG-16网络,在ImageNet数据集下,该并行展开方法实现的稀疏卷积神经网络加速器和使用相同器件的稠密网络设计相比,卷积性能提升了108.8%,整体性能提升了164.6%,具有明显的性能优势。 展开更多
关键词 卷积神经网络 稀疏 嵌入式FPGA ReLU 硬件加速 并行计算 深度学习
在线阅读 下载PDF
基于深度卷积神经网络的羽绒图像识别 被引量:8
18
作者 杨文柱 刘晴 +2 位作者 王思乐 崔振超 张宁雨 《郑州大学学报(工学版)》 CAS 北大核心 2018年第2期11-17,共7页
由于图像中羽绒形态及其多样性,传统的图像识别方法难以正确识别羽绒分拣图像中的羽绒类型,其识别精度也难以达到实际生产的要求.为解决上述问题,构造了一种用于羽绒类型识别的深度卷积神经网络,并对其权值初始化方法进行了改进.首先利... 由于图像中羽绒形态及其多样性,传统的图像识别方法难以正确识别羽绒分拣图像中的羽绒类型,其识别精度也难以达到实际生产的要求.为解决上述问题,构造了一种用于羽绒类型识别的深度卷积神经网络,并对其权值初始化方法进行了改进.首先利用视觉显著性模型提取羽绒图像的显著部分,然后将图像的显著部分输入到稀疏自动编码器中进行训练,得到一组符合数据集统计特性的卷积核集合.最后采用Inception及其变种模块实现深度卷积神经网络的构造,通过增加网络深度来提高网络的识别精度.试验结果表明,用所构造的深度卷积神经网络对羽绒图像识别的精度较传统卷积神经网络的提高了2.7%,且改进的权值初始化方法使网络的收敛速度提高了25.5%. 展开更多
关键词 深度卷积神经网络 权值初始化 稀疏自编码 视觉显著性 图像识别
在线阅读 下载PDF
稀疏卷积神经网络用于低成本图像分类系统
19
作者 冯思镒 赵田锋 +2 位作者 陈诚 李岩 许红梅 《电光与控制》 CSCD 北大核心 2021年第2期7-11,共5页
传统卷积神经网络大量的计算及内存需求使嵌入式设备智能应用的开发成为挑战,为尝试将高度复杂的深度学习应用与性能有限的低成本嵌入式平台相结合,设计了一款小型嵌入式图像分类系统。实验基于结构化稀疏学习算法在Caffe框架下构建结... 传统卷积神经网络大量的计算及内存需求使嵌入式设备智能应用的开发成为挑战,为尝试将高度复杂的深度学习应用与性能有限的低成本嵌入式平台相结合,设计了一款小型嵌入式图像分类系统。实验基于结构化稀疏学习算法在Caffe框架下构建结构稀疏卷积神经网络模型,将其部署在工业派(IndustriPi)最小化系统上,通过测试得到了85.5%的准确率和处理实时影像时不小于8帧/s的运行速度。与经典模型相比,通过稀疏学习后的网络模型很大程度上减少了计算量和内存占用率,提高了低成本嵌入式设备的运行速度。 展开更多
关键词 图像分类 嵌入式系统 深度学习 卷积神经网络 结构化稀疏学习
在线阅读 下载PDF
基于稀疏神经网络的图像超分辨率重建算法
20
作者 黎浩民 李光平 《计算机工程》 CAS CSCD 北大核心 2022年第7期247-253,共7页
部分基于深度学习的图像超分辨率重建算法通过扩展网络层的深度来提高网络模型的整体特征表达能力。然而,一味过度地扩展网络的深度会造成网络模型过参数化和复杂化,并且冗余的网络参数会增加特征表达的不稳定性。在LTH剪枝算法基础上... 部分基于深度学习的图像超分辨率重建算法通过扩展网络层的深度来提高网络模型的整体特征表达能力。然而,一味过度地扩展网络的深度会造成网络模型过参数化和复杂化,并且冗余的网络参数会增加特征表达的不稳定性。在LTH剪枝算法基础上改变权重参数并使用均衡学习策略,提出一种适用于图像超分辨率重建任务的神经网络非结构化剪枝算法RLTH。在不改变网络结构和不增加计算复杂度的前提下,通过搜索原始网络模型的最优稀疏子网络排除冗余参数带来的影响,在有限的参数资源中捕获更细粒度和丰富的图像特征,进而提高网络模型的整体特征表达能力。基于Set5、Set14和BSD100测试集的实验结果表明,与原始网络模型和应用LTH剪枝算法相比,应用RLTH算法获得的重建图像PSNR和SSIM均得到提升,且具有更丰富的细节特征,整体和局部轮廓更清晰。 展开更多
关键词 单帧图像超分辨率重建 神经网络 非结构化剪枝 深度学习 稀疏网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部