期刊文献+

基于SCADA数据分析和稀疏自编码神经网络的风电机组在线运行状态监测 被引量:36

ONLINE CONDITION MONITORING FOR WIND TURBINES BASED ON SCADA DATA ANALYSIS AND SPARSE AUTO-ENCODER NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 通过融合稀疏自编码器和深度神经网络算法,提出一种基于SCADA数据的风电机组在线运行状态监测方法。首先,通过稀疏自编码器学习SCADA高维数据中复杂的内在特征,得到数据的降维表示;其次,基于降维后的数据利用深度神经网络预测风电机组的有功功率,通过对比分析预测功率与实际功率之间的残差判断风电机组的运行状态;最后,利用某风电机组近一年半的SCADA数据,对所提方法进行验证分析,结果表明,所提方法提早5天检测出风电机组发电机的异常情况,为有效避免故障恶化引发的突然停机、降低运维成本、提高风电能源的竞争力提供技术支持和保障。 An integrated approach,which is based on SCADA data analysis,sparse self-encoder and deep neural network algorithms,is proposed for wind turbines online condition monitoring.Firstly,the complex intrinsic features of SCADA high-dimensional data are learned by sparse auto-encoder,and the reduced dimension data is obtained.Secondly,deep neural network is used to predict the output power of wind turbine based on the reduced dimension data,wind turbine’s condition is judged by analyzing the residuals between the predicted active power and the actual active power.Finally,SCADA data of a wind turbine for nearly one and a half years are used to verify the proposed method.Results show that the proposed approach can detect anomalies of wind turbine generator 5 days before it is shut down for maintenance which can avoid the shutdown caused by catastrophic failures,reduce the maintenance cost,and improve the competitiveness of the wind energy.
作者 金晓航 许壮伟 孙毅 单继宏 Jin Xiaohang;Xu Zhuangwei;Sun Yi;Shan Jihong(Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education and Zhejiang Province,Zhejiang University of Technology,Hangzhou 310023,China;College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310023,China;Ninghai ZJUT Academy of Science and Technology,Ninghai 315600,China;Institute of Ocean Research,Zhejiang University of Technology,Hangzhou 310014,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第6期321-328,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51505424,51675484) 浙江省自然科学基金(LY15E050019) 浙江省公益技术应用高新项目(LGG19F010008) 宁波市自然科学基金(2018A610045)。
关键词 风电机组 状态监测 深度神经网络 稀疏自编码器 数据采集与监控系统 wind turbine condition monitoring deep neural network sparse auto-encoder supervisory control and data acquisition system
作者简介 通信作者:金晓航(1981-),男,博士、副教授,主要从事新能源机电装备的智能运维方面的研究。xhjin@zjut.edu.cn。
  • 相关文献

参考文献9

二级参考文献98

  • 1ZOU Zhi-hong YUN Yi SUN Jing-nan.Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J].Journal of Environmental Sciences,2006,18(5):1020-1023. 被引量:222
  • 2周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:149
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Lin L L, Lee H M. Fuzzy assessment method on sampling survey analysis [J]. Expert System with Application, 2009, 36(3) : 5955-5961.
  • 5Chen S K, Ho T K, Mao B H. Reliability evaluation of railway power supplies by fault tree analysis [ J ]. Electric Power Applications, IET, 2007, 1(2): 161-172.
  • 6Al-Shareedah E M, Alawi H. Reliability analysis of bevel gears with and without back support [ J ]. Mechanism and Machine Theory, 1987, 22( 1 ): 13-20.
  • 7Rao S S, Tjandra M. Reliability-based design of automotive transmission systems [ J ]. Reliability Engineering & System Safety, 1994, 46(2): 159-169.
  • 8Daisuke Y, Li G D, Kozo M. On the generalization of grey relational analysis [ J ]. Journal of Grey System, 2006, 9 ( 1 ) : 23-34.
  • 9FENG Y H,QIU Y N,CRABTREE C J. Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox[A].Brussels,Belgium,2011.
  • 10MOHANTY A R,CHINMAYA K. Fault detection in a multistage gearbox by demodulation of motor current waveform[J].IEEE Transactions on Industrial Electronics,2006,(04):1285-1297.

共引文献304

同被引文献343

引证文献36

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部