期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进共振稀疏分解的滚动轴承早期故障特征提取方法
1
作者 孙梦 高丙朋 程静 《机械强度》 北大核心 2025年第6期17-26,共10页
针对滚动轴承发生早期故障时其故障特征微弱,复杂运行环境下的故障特征容易被噪声淹没的问题,提出了基于改进的人工大猩猩部队(Improved Artificial Gorilla Troops Optimizer,IGTO)算法、优化共振稀疏分解(Resonancebased Sparse Signa... 针对滚动轴承发生早期故障时其故障特征微弱,复杂运行环境下的故障特征容易被噪声淹没的问题,提出了基于改进的人工大猩猩部队(Improved Artificial Gorilla Troops Optimizer,IGTO)算法、优化共振稀疏分解(Resonancebased Sparse Signal Decomposition,RSSD)、多参数与稀疏最大谐波噪声比解卷积(Sparse Maximum Harmonics-to-noise-ratio Deconvolution,SMHD)方法相结合的早期故障诊断方法。首先,以低共振分量的平方包络谱相关峭度(Squared Envelope Spectral Correlated Kurtosis,SE-SCK)负值为目标函数,利用IGTO同时优化RSSD的品质因子Q、权重系数λ和拉格朗日乘子μ,实现小波基函数和耗散函数的最优匹配,以获得富含故障信息的最优低共振分量;其次,将其输入SMHD进行滤波处理;最后,进行包络谱分析提取故障特征。算法对比试验表明,IGTO算法寻优性能显著提高;仿真和XJTU-SY轴承全寿命周期故障信号试验结果表明,所提方法更能有效地提取滚动轴承早期微弱故障特征。 展开更多
关键词 改进的人工大猩猩部队算法 共振稀疏 平方包络谱相关峭度 稀疏最大谐波噪声比解卷积 早期故障诊断
在线阅读 下载PDF
基于改进VME结合SMHD的滚动轴承故障特征提取方法与实验分析
2
作者 陈志刚 杨远鹏 王衍学 《实验技术与管理》 北大核心 2025年第4期92-99,共8页
为解决在强噪声背景下滚动轴承故障特征提取精度较低问题,提出一种麻雀搜索算法(SSA)优化变分模态提取(VME),并结合稀疏最大谐波噪声比解卷积(SMHD)的诊断方法。首先,利用SSA对VME进行优化,以能量特征指标为适应度函数,选取最优的惩罚... 为解决在强噪声背景下滚动轴承故障特征提取精度较低问题,提出一种麻雀搜索算法(SSA)优化变分模态提取(VME),并结合稀疏最大谐波噪声比解卷积(SMHD)的诊断方法。首先,利用SSA对VME进行优化,以能量特征指标为适应度函数,选取最优的惩罚因子和中心频率参数;然后,将选取的最优参数输入到VME中进行信号分解,得到期望模态分量;再后,对提取到的模态分量进行解卷积处理,利用稀疏因子和谐波噪声比进一步抑制噪声,提高信号的信噪比;最后,对经SMHD处理后的信号进行包络谱分析,提取出故障特征频率。实验结果表明,该方法能更加有效地剔除多余噪声信号,增强冲击脉冲信号,在故障特征频率及多个倍频处均能清晰观察到故障特征频率。 展开更多
关键词 轴承故障诊断 变分模态提取 能量特征指标 麻雀搜索算法 稀疏最大谐波噪声比解卷积
在线阅读 下载PDF
基于VEITD和OSMHD的风电机组轴承损伤识别 被引量:4
3
作者 唐贵基 朱星皓 +3 位作者 王晓龙 薛贵 徐振丽 周威 《电力自动化设备》 EI CSCD 北大核心 2023年第6期101-107,共7页
针对风力发电机轴承损伤信号易被强噪声干扰导致损伤特征提取困难的问题,提出了一种基于可变熵加权融合的固有时间尺度分解和优化稀疏最大谐波噪声比解卷积法相结合的风力发电机轴承损伤识别方法。采用固有时间尺度分解方法对原始信号... 针对风力发电机轴承损伤信号易被强噪声干扰导致损伤特征提取困难的问题,提出了一种基于可变熵加权融合的固有时间尺度分解和优化稀疏最大谐波噪声比解卷积法相结合的风力发电机轴承损伤识别方法。采用固有时间尺度分解方法对原始信号进行分解,得到若干个固有旋转分量。利用可变熵对固有旋转分量进行加权融合。使用优化稀疏最大谐波噪声比解卷积法对加权融合信号进行处理,提取轴承损伤特征频率。试验台数据和风力发电机现场数据分析结果表明,所提方法对轴承损伤信号中的噪声抑制效果明显,能够准确提取风力发电机轴承损伤特征频率,实现风力发电机轴承的损伤识别。 展开更多
关键词 风力发电机组 滚动轴承 损伤识别 固有时间尺度分 稀疏最大谐波噪声比解卷积
在线阅读 下载PDF
OVME结合SMHD的风电机组变桨轴承损伤识别 被引量:3
4
作者 唐贵基 薛贵 王晓龙 《动力工程学报》 CAS CSCD 北大核心 2023年第8期1039-1046,共8页
针对风电机组变桨轴承的损伤识别问题,提出一种优化变分模态提取结合稀疏最大谐波噪声比解卷积的新颖损伤识别方法,旨在从复合信号中提取特定信号分量。首先,以能量特征指标为适应度函数,利用白鲨优化算法对变分模态提取算法的最优影响... 针对风电机组变桨轴承的损伤识别问题,提出一种优化变分模态提取结合稀疏最大谐波噪声比解卷积的新颖损伤识别方法,旨在从复合信号中提取特定信号分量。首先,以能量特征指标为适应度函数,利用白鲨优化算法对变分模态提取算法的最优影响参数组合进行搜索,确定变分模态提取的平衡因子和中心频率的最优值;其次,利用变分模态提取从振动信号中提取特定信号分量,并对提取的信号分量进行稀疏最大谐波噪声比解卷积处理,提高信号的信噪比,得到解卷积信号;最后,对解卷积信号进行包络谱分析,从中提取轴承损伤特征频率。结果表明:该方法能准确识别风电机组变桨轴承的损伤特征,具有一定的实际工程参考价值。 展开更多
关键词 风电机组 变桨轴承 损伤识别 白鲨优化 变分模态提取 稀疏最大谐波噪声比解卷积
在线阅读 下载PDF
参数自适应SMHD滚动轴承IAS信号特征提取方法 被引量:1
5
作者 钟辉 郭瑜 高国泽 《电子测量与仪器学报》 CSCD 北大核心 2023年第12期10-17,共8页
针对编码器瞬时角速度(IAS)信号中滚动轴承故障特征提取困难的问题,结合稀疏最大谐波噪声比解卷积(SMHD)算法可在没有先验周期情况下提取信号中周期性脉冲故障分量的优势提出一种参数自适应SMHD滚动轴承IAS信号特征提取方法。首先,利用... 针对编码器瞬时角速度(IAS)信号中滚动轴承故障特征提取困难的问题,结合稀疏最大谐波噪声比解卷积(SMHD)算法可在没有先验周期情况下提取信号中周期性脉冲故障分量的优势提出一种参数自适应SMHD滚动轴承IAS信号特征提取方法。首先,利用向前差分法估计IAS信号;然后,利用故障特征(FC)作为自适应选取SMHD优化滤波器长度的评判指标,实现SMHD滤波器长度的自适应确定;再将优化选取的滤波器长度代入SMHD算法对IAS信号进行增强。最后,通过包络分析揭示滚动轴承故障特征。通过对仿真和实测数据进行分析,验证了所提方法的有效性。 展开更多
关键词 滚动轴承 瞬时角速度 稀疏最大谐波噪声比解卷积 参数自适应
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部