期刊文献+
共找到793篇文章
< 1 2 40 >
每页显示 20 50 100
基于RBF神经网络函数拟合方法的仿真与研究 被引量:2
1
作者 王丽丽 《河北农机》 2016年第11期61-61,63,共2页
为了解决非线性系统采用常规方法建模难的问题,利用神经网络可逼近任意连续有界非线性函数的能力,提出基于RBF神经网络逼近函数的方法,并详细论述了RBF神经网络的结构原理与学习算法。应用函数逼近实例,基于MATLAB仿真软件,仿真结果表明... 为了解决非线性系统采用常规方法建模难的问题,利用神经网络可逼近任意连续有界非线性函数的能力,提出基于RBF神经网络逼近函数的方法,并详细论述了RBF神经网络的结构原理与学习算法。应用函数逼近实例,基于MATLAB仿真软件,仿真结果表明,RBF神经网络能较好地逼近函数,适用于非线性动态系统的建模与估计。 展开更多
关键词 RBF神经网络函数 建模 仿真与研究
在线阅读 下载PDF
基于径向基函数神经网络重载发动机曲轴的可靠性分析
2
作者 赵明轩 桑建兵 +2 位作者 丛继坤 钟星宇 李长远 《内燃机工程》 北大核心 2025年第5期100-108,120,共10页
针对传统可靠性分析方法计算成本高且精度不高等问题,结合灰色关联度分析(grey relational analysis,GRA)、径向基函数神经网络(radial basis function neural network,RBFNN)及粒子群优化算法(particle swarm optimization,PSO),提出... 针对传统可靠性分析方法计算成本高且精度不高等问题,结合灰色关联度分析(grey relational analysis,GRA)、径向基函数神经网络(radial basis function neural network,RBFNN)及粒子群优化算法(particle swarm optimization,PSO),提出了一种针对重载发动机曲轴的可靠性分析方法。首先,根据曲轴的动力学分析和点火做功状态确定了其危险工况并利用有限元软件ANSYS Workbench建立了静力学计算模型。其次,结合曲轴的几何参数和总体结构确定了影响最大Mises应力的不确定性因素,并对其进行灰色关联度分析筛选出径向基函数神经网络的输入参数。最后,依据不确定性参数的分布情况使用最优拉丁超立方(optimal Latin hy⁃percube sampling,OLHS)进行采样,根据第四强度理论确定曲轴的破坏准则后,引入粒子群优化算法,结合径向基函数神经网络和蒙特卡洛方法(RBFNN–Monte Carlo,RBFNN–MC)预测了曲轴的可靠度和失效概率。研究结果表明,RBFNN–MC方法与传统可靠性分析方法相比,在保证高精度的前提下具有更高的效率和更好的鲁棒性。 展开更多
关键词 曲轴 可靠性分析 灰色关联度分析 径向基函数神经网络 粒子群优化算法
在线阅读 下载PDF
单级齿轮系统混沌运动及其径向基函数神经网络控制
3
作者 王瑞邦 田亚平 +3 位作者 张峰 卢杭 王建勤 杨江辉 《噪声与振动控制》 北大核心 2025年第4期32-38,共7页
为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré... 为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré截面上点的欧式距离为输入,构建径向基函数神经网络控制器,使用改进局部搜索能力和寻优速度的引力搜索算法优化径向基函数神经网络控制器的参数,实现系统混沌运动向周期运动的有效控制。结果表明径向基函数神经网络控制方法不受系统的Jacobian矩阵和流形的限制更具有工程普适性。 展开更多
关键词 振动与波 单级齿轮传动系统 混沌控制 径向基函数神经网络 万有引力搜索算法
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
4
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ARBFNN)
在线阅读 下载PDF
基于RBF神经网络的多摄像头室内人体定位方法
5
作者 杨萍 李元 张玉杰 《计算机工程与设计》 北大核心 2025年第10期2902-2909,共8页
针对当前摄像头室内人体定位存在复杂标定且精度有限等问题,提出一种基于径向基函数神经网络的非标定人体定位方法。采用YOLOv8算法对多个摄像头采集的图像进行人体识别;利用匈牙利算法实现人体匹配,得到同一个人在多张图像中的像素坐标... 针对当前摄像头室内人体定位存在复杂标定且精度有限等问题,提出一种基于径向基函数神经网络的非标定人体定位方法。采用YOLOv8算法对多个摄像头采集的图像进行人体识别;利用匈牙利算法实现人体匹配,得到同一个人在多张图像中的像素坐标;将对应的像素坐标作为径向基函数神经网络的输入、世界坐标作为输出,对神经网络进行训练并实现对人体位置的准确定位。实验结果表明,该方法的平均绝对误差仅为9.689 cm,最小误差仅为6.5 cm,满足了工程上非标定的定位要求。 展开更多
关键词 室内人体定位 摄像头标定 径向基函数神经网络 YOLOv8 人体识别 匈牙利算法 人体匹配
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
6
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向基函数神经网络 粒子群优化算法 参数预测
在线阅读 下载PDF
基于GWO-RBF神经网络的城市机动车能耗预测
7
作者 李四洋 张瑞 +2 位作者 李雅男 陈贺鹏 陈艳艳 《科学技术与工程》 北大核心 2025年第8期3480-3486,共7页
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net... 在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。 展开更多
关键词 机动车 能耗 径向基函数神经网络(RBFNN) 灰狼算法(GWO)
在线阅读 下载PDF
基于RBF神经网络的分数阶虚拟同步机控制策略
8
作者 张赟宁 郭钟仁 张磊 《电力系统及其自动化学报》 北大核心 2025年第9期101-108,共8页
虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题... 虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题,本文首先建立分数阶虚拟同步机数学模型,引入可调参数增加系统的自由度。然后,设计径向基函数神经网络对虚拟同步机的转动惯量和阻尼系数进行在线自适应调节,将调节后的转动惯量、阻尼系数和可调参数应用于分数阶虚拟同步机控制器。最后,通过Matlab/Simulink仿真比较传统策略与所提控制策略的动态响应。仿真结果表明,所提控制策略能够显著抑制系统在发生扰动时输出有功功率和输出频率的振荡和超调,且具有良好的动态响应,验证了所提控制策略的有效性。 展开更多
关键词 虚拟同步发电机 分数阶微积分 径向基函数神经网络 自适应调节
在线阅读 下载PDF
基于RBF神经网络的光滑不确定模型自适应采样方法
9
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向基函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
基于分布式观测器的航天器姿态接管神经网络自适应控制
10
作者 骆轩宇 刘闯 岳晓奎 《宇航学报》 北大核心 2025年第8期1642-1653,共12页
针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线... 针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线性动力学模型的逼近;通过基于神经网络观测器的分布式状态观测器,解决了仅有部分卫星对目标进行测量的问题,实现了在模型未知情况下对组合体航天器的观测一致性;通过设计自适应补偿控制律,随执行机构故障调整控制参数,实现了对参考姿态运动的跟踪控制。将本文设计的控制方法应用于非合作航天器的姿态接管问题,仿真结果表明其能实现对组合体航天器姿态跟踪的精确控制。 展开更多
关键词 非合作航天器 径向基函数神经网络 自适应控制 分布式观测器 姿态接管控制
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
11
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向基函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
12
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向基函数神经网络算法 高频转阀 液压马达 转速控制
在线阅读 下载PDF
基于神经网络的船测稀疏海域地形反演改进算法
13
作者 欧阳明达 翟振和 +3 位作者 牛向华 管斌 张鹏飞 付永健 《中国惯性技术学报》 北大核心 2025年第1期64-69,共6页
针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,... 针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,所建立神经网络模型用于长波重力异常格网构建,达到提高地形反演精度的目的。为验证改进算法有效性,设计7种不同组合模式,将南中国海某海域作为研究对象,对比形成最优方案,结果表明,在船测稀疏海域,改进方案相比重力地质法反演精度提高40%以上。 展开更多
关键词 重力地质法 径向基函数神经网络算法 重力异常 海底地形
在线阅读 下载PDF
基于扰动输入的汽车电子节气门RBF神经网络监督控制
14
作者 孙建民 杨世虎 +2 位作者 赵磊 陈昊 姚德臣 《中国工程机械学报》 北大核心 2025年第4期644-648,654,共6页
电子节气门作为发动机系统中进气环节的关键部位,为实现其快速、高精度控制,提出了一种基于径向基函数(RBF)神经网络监督控制的电子节气门控制策略。在建立模型时,考虑空气阻力矩对其控制的影响,将非线性环节作为扰动输入,进而推导出电... 电子节气门作为发动机系统中进气环节的关键部位,为实现其快速、高精度控制,提出了一种基于径向基函数(RBF)神经网络监督控制的电子节气门控制策略。在建立模型时,考虑空气阻力矩对其控制的影响,将非线性环节作为扰动输入,进而推导出电子节气门系统传递函数,模型控制过程中由比例-积分-微分(PID)控制器和RBF神经网络协调控制。利用Matlab软件对不同跟踪信号进行仿真实验,在正弦跟踪响应中所提方法的跟踪响应速度是传统PID控制的约1.82倍,跟踪误差更小且无超调现象。在阶跃响应工况中所提方法的响应时间约为0.129 s,表明该方法具有良好的鲁棒性,面对需要及时响应车辆走停车况时相比PID控制具有更优良的动态性能。 展开更多
关键词 电子节气门控制 径向基函数神经网络 非线性控制 精确跟踪 空气阻力矩
在线阅读 下载PDF
基于多变量相空间重构和径向基函数神经网络的综合能源系统电冷热超短期负荷预测 被引量:16
15
作者 窦真兰 张春雁 +2 位作者 许一洲 高煜焜 刘皓明 《电网技术》 EI CSCD 北大核心 2024年第1期121-128,共8页
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦... 为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。 展开更多
关键词 电冷热负荷预测 综合能源系统 多变量相空间重构 径向基函数神经网络
在线阅读 下载PDF
基于权重自适应更新径向基函数神经网络的水下游动机械臂镇定控制 被引量:2
16
作者 孙非 曹宇赫 +1 位作者 崔特 任超 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期1-8,共8页
水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑... 水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑战。针对这一问题,本文基于反馈线性化和自适应径向基函数神经网络(radial basis function neural network,RBFNN),设计了一种动力学控制方案以实现USM的镇定控制。首先,介绍了USM平台结构,基于Lagrange方程给出了USM的动力学模型,并推导了USM的矢量推力系统模型。然后,设计了基于反馈线性化和RBFNN的动力学控制器,并通过反步法自适应更新RBFNN的权重。其中,权重自适应更新RBFNN用于实时估计系统未建模部分、参数误差以及外部扰动,从而对动力学控制器进行补偿。此外,为了将动力学控制器提供的广义力和力矩转换成各个执行器的控制输入,给出了推力分配策略。最后,进行了湖泊实验,分别对USM的I构型和C构型镇定控制,文章所提出的控制方案在两种构型下的稳态误差均小于0.08 m和10°,验证了所提出的USM六自由度镇定控制器的有效性。 展开更多
关键词 水下游动机械臂 动力学建模 反馈线性化 径向基函数神经网络
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
17
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向基函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
特征扩展的随机向量函数链神经网络
18
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数神经网络(RVFLNN) Sigmoid激活函数 可解释
在线阅读 下载PDF
基于自适应扰动观测器的旋转弹神经网络过载驾驶仪设计 被引量:1
19
作者 王伟 杨婧 +2 位作者 南宇翔 李俊辉 王雨辰 《兵工学报》 EI CAS CSCD 北大核心 2024年第11期3841-3855,共15页
旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基... 旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基函数神经网络,设计自适应前馈补偿控制器,有效实现对模型不确定性的精确逼近。将神经网络逼近误差和外部扰动处理为总扰动,并基于固定时间稳定理论设计一种自适应扰动观测器,实现对总扰动的精确估计及补偿。通过Lyapunov理论,严格证明了闭环系统的最终一致有界性。通过数值仿真验证了所设计方法的有效性。 展开更多
关键词 旋转弹 双通道控制 径向基函数神经网络 自适应扰动观测器 固定时间稳定理论
在线阅读 下载PDF
弧齿锥齿轮动力特性分析及其神经网络控制 被引量:3
20
作者 田亚平 杨江辉 +2 位作者 王瑞邦 窦建明 王建勤 《振动与冲击》 EI CSCD 北大核心 2024年第12期166-172,共7页
针对含间隙锥齿轮系统动力学特性转迁及其控制问题,提出了基于胞元映射理论的参数解域结构和基于径向基函数神经网络的控制方法。采用集中质量法建立了7自由度弧齿锥齿轮动力学模型,基于胞元映射理论构建了频率和负载参数平面,采用伪不... 针对含间隙锥齿轮系统动力学特性转迁及其控制问题,提出了基于胞元映射理论的参数解域结构和基于径向基函数神经网络的控制方法。采用集中质量法建立了7自由度弧齿锥齿轮动力学模型,基于胞元映射理论构建了频率和负载参数平面,采用伪不动点延续追踪算法求解了系统的分岔、齿面冲击、脱啮、齿背接触和动载特性转迁规律,分析发现频率和齿面冲击是影响周期分岔的主要因素,随负载增大其脱啮、冲击减弱,动载系数增大。针对平面中系统混沌现象,设计了参数反馈控制器、基于Poincaré截面欧氏距离构造适应度函数,用自适应引力搜索算法对控制器参数进行优化,从而实现了系统混沌、拟周期和周期运动向周期轨道有效控制。 展开更多
关键词 非线性振动 弧齿锥齿轮传动系统 分岔 齿面冲击 径向基函数神经网络
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部