制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶...制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.展开更多
通过溶胶.凝胶(sol-gel)工艺制备了一种掺铕磷灰石,硅灰石磁性生物玻璃陶瓷(apatite-wollastonite magnetic glass ceramic,AWMGC)。采用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、振动磁强计(VSM)等方法分析材料晶相...通过溶胶.凝胶(sol-gel)工艺制备了一种掺铕磷灰石,硅灰石磁性生物玻璃陶瓷(apatite-wollastonite magnetic glass ceramic,AWMGC)。采用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、振动磁强计(VSM)等方法分析材料晶相组成、显微结构、磁性、生物活性;并通过与人肝细胞L02、骨髓基质干细胞(MSC)复合培养对新制备的AWMGC的生物相容性及其对人体细胞的作用进行了实验分析。结果表明:掺有适量稀土铕(Eu)的生物玻璃陶瓷既能够保持良好的生物活性,又能表现出一定的磁性。是一类十分具有发展潜力的骨修复材料、骨组织工程支架材料。展开更多
采用高速火焰(HVOF)喷涂技术,在Ti6Al4v基体上制备了AP40玻璃陶瓷涂层.利用光学显微镜、SEM和XRD对喷涂层形貌、显微组织结构和相组成进行了研究.探讨了热处理工艺对涂层组织结构及其性能的影响.按德国DIN EN 582—1994标准进行涂层的...采用高速火焰(HVOF)喷涂技术,在Ti6Al4v基体上制备了AP40玻璃陶瓷涂层.利用光学显微镜、SEM和XRD对喷涂层形貌、显微组织结构和相组成进行了研究.探讨了热处理工艺对涂层组织结构及其性能的影响.按德国DIN EN 582—1994标准进行涂层的拉伸强度试验.结果表明:HVOF喷涂AP40玻璃陶瓷涂层具有层状结构,含有少量孔隙和未熔化的颗粒;涂层主要由羟基磷灰石、氟磷灰石、硅灰石、方石英及部分玻璃相组成,喷涂工艺对涂层的孔隙率有较大的影响;合适的热处理工艺可提高涂层的结晶度,使涂层变得致密,使孔隙明显减少,使涂层结合强度得到明显提高.展开更多
文摘制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.
文摘通过溶胶.凝胶(sol-gel)工艺制备了一种掺铕磷灰石,硅灰石磁性生物玻璃陶瓷(apatite-wollastonite magnetic glass ceramic,AWMGC)。采用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、振动磁强计(VSM)等方法分析材料晶相组成、显微结构、磁性、生物活性;并通过与人肝细胞L02、骨髓基质干细胞(MSC)复合培养对新制备的AWMGC的生物相容性及其对人体细胞的作用进行了实验分析。结果表明:掺有适量稀土铕(Eu)的生物玻璃陶瓷既能够保持良好的生物活性,又能表现出一定的磁性。是一类十分具有发展潜力的骨修复材料、骨组织工程支架材料。
文摘采用高速火焰(HVOF)喷涂技术,在Ti6Al4v基体上制备了AP40玻璃陶瓷涂层.利用光学显微镜、SEM和XRD对喷涂层形貌、显微组织结构和相组成进行了研究.探讨了热处理工艺对涂层组织结构及其性能的影响.按德国DIN EN 582—1994标准进行涂层的拉伸强度试验.结果表明:HVOF喷涂AP40玻璃陶瓷涂层具有层状结构,含有少量孔隙和未熔化的颗粒;涂层主要由羟基磷灰石、氟磷灰石、硅灰石、方石英及部分玻璃相组成,喷涂工艺对涂层的孔隙率有较大的影响;合适的热处理工艺可提高涂层的结晶度,使涂层变得致密,使孔隙明显减少,使涂层结合强度得到明显提高.