In order to expand the application of the basic magnesium carbonate in the field of flame retardant,the plate-like basic magnesium carbonate(Mg5(CO3)4(OH)2.4H2O)was prepared successfully by template-mediated/homogeneo...In order to expand the application of the basic magnesium carbonate in the field of flame retardant,the plate-like basic magnesium carbonate(Mg5(CO3)4(OH)2.4H2O)was prepared successfully by template-mediated/homogeneous precipitation method,using magnesium chloride hexahydrate(MgCl2.6H2O)and urea(CO(NH2)2)as reaction materials.Phase and morphology of the product were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and atomic force microscope(AFM),respectively.The results showed that well-crystallized plate-like Mg5(CO3)4(OH)2.4H2O can be prepared at the water bath temperature of 100°C,water bath time of 24 h,the aging time of 5 h after adding organic template agent.The investigation on organic template mediated mechanism shows that the template affects the crystal morphology by changing surface energy of different crystal plane.Through a preliminary study on the growth mechanism of the product,it is found that the generation of the plate-like Mg5(CO3)4(OH)2.4H2O could be explained by two-dimensional nucleation/step growth mechanism.展开更多
A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-0...A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-03 were optimized, and the maximum lipase production of (45.9±2.3) U/mL was obtained at 30 ℃ and pH 7.0 after 36 h using olive oil (1%) and sucrose (0.5%) as carbon sources and combination of peptone (2%), yeast extract (0.5%) and ammonium sulfate (0.1%) as nitrogen sources. The lipase was purified to homogeneity with 10.6-fold, 18.84% yield and a specific activity of 1 862.2 U/mg using ammonium sulfate precipitation followed by SephadexG-75 gel filtration chromatography. The purified lipase with molecular mass of 68 ku was estimated by SDS-PAGE. The optimum pH and temperature for the purified lipase were found to be 8.5 and 40 ℃, respectively. The lipase kept more than 80% of activity in pH 7.0-10.0 and temperatures up to 45 ℃. The metal ions of Mn2+, Ba2+ significantly enhanced the lipase activity, whereas Cu2+, Fe3+ and Mg2+ strongly reduced the lipase activity. The Km and Vmax values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mrnol/L and 60.6 mmol/(L.min), respectively. The results show that this novel lipase has potential industrial applications.展开更多
基金Project(51374155)supported by the National Natural Science Foundation of ChinaProject(2014BCB034)supported by the Hubei Province Key Technology R&D Program,ChinaProject(2014CFB796)supported by the Natural Science Foundation of Hubei Province of China
文摘In order to expand the application of the basic magnesium carbonate in the field of flame retardant,the plate-like basic magnesium carbonate(Mg5(CO3)4(OH)2.4H2O)was prepared successfully by template-mediated/homogeneous precipitation method,using magnesium chloride hexahydrate(MgCl2.6H2O)and urea(CO(NH2)2)as reaction materials.Phase and morphology of the product were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and atomic force microscope(AFM),respectively.The results showed that well-crystallized plate-like Mg5(CO3)4(OH)2.4H2O can be prepared at the water bath temperature of 100°C,water bath time of 24 h,the aging time of 5 h after adding organic template agent.The investigation on organic template mediated mechanism shows that the template affects the crystal morphology by changing surface energy of different crystal plane.Through a preliminary study on the growth mechanism of the product,it is found that the generation of the plate-like Mg5(CO3)4(OH)2.4H2O could be explained by two-dimensional nucleation/step growth mechanism.
文摘A strain HB-03 to produce alkaline extracellular lipase was isolated from oil-rich soil samples and identified as Aspergillus awamori. The growth conditions and nutritional factors for lipase production by strain HB-03 were optimized, and the maximum lipase production of (45.9±2.3) U/mL was obtained at 30 ℃ and pH 7.0 after 36 h using olive oil (1%) and sucrose (0.5%) as carbon sources and combination of peptone (2%), yeast extract (0.5%) and ammonium sulfate (0.1%) as nitrogen sources. The lipase was purified to homogeneity with 10.6-fold, 18.84% yield and a specific activity of 1 862.2 U/mg using ammonium sulfate precipitation followed by SephadexG-75 gel filtration chromatography. The purified lipase with molecular mass of 68 ku was estimated by SDS-PAGE. The optimum pH and temperature for the purified lipase were found to be 8.5 and 40 ℃, respectively. The lipase kept more than 80% of activity in pH 7.0-10.0 and temperatures up to 45 ℃. The metal ions of Mn2+, Ba2+ significantly enhanced the lipase activity, whereas Cu2+, Fe3+ and Mg2+ strongly reduced the lipase activity. The Km and Vmax values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mrnol/L and 60.6 mmol/(L.min), respectively. The results show that this novel lipase has potential industrial applications.