期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于图像相对位置和负向感知的图文匹配
1
作者 余超 王铭硕 +1 位作者 赵子樵 于清 《现代电子技术》 北大核心 2024年第17期88-93,共6页
图文匹配任务在计算机视觉以及多模态信息处理领域引起了广泛关注。这一跨模态任务主要难点在于如何高效地提取视觉和文本的信息以及如何解决不一致图文冲突问题。文中提出了一种新颖的图像文本匹配方法,利用图像对象相对位置的注意力... 图文匹配任务在计算机视觉以及多模态信息处理领域引起了广泛关注。这一跨模态任务主要难点在于如何高效地提取视觉和文本的信息以及如何解决不一致图文冲突问题。文中提出了一种新颖的图像文本匹配方法,利用图像对象相对位置的注意力机制解决忽视图像中物体相对位置信息的问题,从而更好地关注视觉信息的提取,同时为了解决忽视图像-文本间不对齐内容相似度贡献的问题,运用了负向感知模块关注物体相对位置和文本中的单词非对齐的信息对相似度的负贡献,从而提高图像-文本匹配相似度的准确性。最后,在公开图文匹配数据集Flickr30K上达到了最好的r_(Sum),比当前最好的负向感知模型提高了7.3,取得了最先进的性能。 展开更多
关键词 多模态 图文匹配 视觉信息提取 相对位置编码 注意力机制 负向感知
在线阅读 下载PDF
基于改进位置编码的谣言检测模型 被引量:2
2
作者 姜梦函 李邵梅 +1 位作者 郑洪浩 张建朋 《计算机科学》 CSCD 北大核心 2022年第8期330-335,共6页
随着在线社交网络的兴起,人们传播和获取信息的方式发生了翻天覆地的变化。社交媒体在方便人们生活的同时,也加速了谣言的产生和传播。因此,如何准确高效地检测谣言成为了亟待解决的问题。为了提高谣言检测的精度,对基于全局-局部注意... 随着在线社交网络的兴起,人们传播和获取信息的方式发生了翻天覆地的变化。社交媒体在方便人们生活的同时,也加速了谣言的产生和传播。因此,如何准确高效地检测谣言成为了亟待解决的问题。为了提高谣言检测的精度,对基于全局-局部注意网络的谣言检测模型进行了改进,考虑到文本中词与词之间的位置关系对谣言检测的影响,引入了一种新的相对位置编码方法来改进原有模型的局部特征提取模块。该方法能够更准确地提取谣言中文本的语义信息和位置信息并将它们聚合,得到更优的区分谣言与非谣言的文本特征,将该特征和描述转发行为的全局特征相结合,进而提升对谣言的检测效果。实验结果表明,与其他主流检测方法相比,所提方法在微博数据集上的F1值可达95.0%,具有更好的检测效果。 展开更多
关键词 谣言检测 深度学习 注意力机制 相对位置编码 谣言文本特征
在线阅读 下载PDF
基于卷积辅助自注意力的胸部疾病分类网络
3
作者 张自然 李锵 关欣 《浙江大学学报(工学版)》 北大核心 2025年第5期890-901,共12页
针对胸部X光影像中的病变大小不一,纹理复杂,且存在相互影响等问题,提出基于卷积辅助窗口自注意力的胸部X光影像疾病分类网络CAWSNet.使用Swin Transformer作为骨干网络,以窗口自注意力建模长距离视觉依赖关系,通过引入卷积辅助,在弥补... 针对胸部X光影像中的病变大小不一,纹理复杂,且存在相互影响等问题,提出基于卷积辅助窗口自注意力的胸部X光影像疾病分类网络CAWSNet.使用Swin Transformer作为骨干网络,以窗口自注意力建模长距离视觉依赖关系,通过引入卷积辅助,在弥补其缺陷的同时,强化局部特征提取能力.引入图像相对位置编码,通过有向相对位置的动态计算,帮助网络更好地建模像素间的位置关系.使用类别残差注意力,根据疾病类别来调整分类器关注的区域,突出有效信息,提高多标签分类能力.提出动态难度损失函数,解决不同疾病分类的难度差异大,数据集中正负样本不平衡的问题.在公开数据集ChestX-Ray14、CheXpert和MIMIC-CXR-JPG上的实验结果表明,提出CAWSNet的AUC分数分别达到0.853、0.898和0.819,表明该网络在胸部X光影像疾病诊断中的有效性和鲁棒性. 展开更多
关键词 胸部X光图像分类 窗口自注意力 卷积 图像相对位置编码 动态难度损失函数
在线阅读 下载PDF
基于Transformer编码器的中文命名实体识别模型 被引量:12
4
作者 司逸晨 管有庆 《计算机工程》 CAS CSCD 北大核心 2022年第7期66-72,共7页
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式... 命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。 展开更多
关键词 自然语言处理 中文命名实体识别 Transformer编码 条件随机场 相对位置编码
在线阅读 下载PDF
基于改进型Transformer编码器和特征融合的行人重识别 被引量:3
5
作者 赵倩 薛超晨 赵琰 《数据采集与处理》 CSCD 北大核心 2023年第2期375-385,共11页
为了解决Transformer编码器在行人重识别中因图像块信息丢失以及行人局部特征表达不充分导致模型识别准确率低的问题,本文提出改进型Transformer编码器和特征融合的行人重识别算法。针对Transformer在注意力运算时会丢失行人图像块相对... 为了解决Transformer编码器在行人重识别中因图像块信息丢失以及行人局部特征表达不充分导致模型识别准确率低的问题,本文提出改进型Transformer编码器和特征融合的行人重识别算法。针对Transformer在注意力运算时会丢失行人图像块相对位置信息的问题,引入相对位置编码,促使网络关注行人图像块语义化的特征信息,以增强行人特征的提取能力。为了突出包含行人区域的显著特征,将局部patch注意力机制模块嵌入到Transformer网络中,对局部关键特征信息进行加权强化。最后,利用全局与局部信息特征融合实现特征间的优势互补,提高模型识别能力。训练阶段使用Softmax及三元组损失函数联合优化网络,本文算法在Market1501和DukeMTMC⁃reID两大主流数据集中评估测试,Rank⁃1指标分别达到97.5%和93.5%,平均精度均值(mean Average precision,mAP)分别达到92.3%和83.1%,实验结果表明改进型Transformer编码器和特征融合算法能够有效提高行人重识别的准确率。 展开更多
关键词 计算机图像处理 行人重识别 局部注意力 相对位置编码 特征融合 TRANSFORMER
在线阅读 下载PDF
融合词汇边界信息的合同实体识别方法 被引量:1
6
作者 王浩畅 和婷婷 郑冠彧 《计算机工程与设计》 北大核心 2024年第6期1757-1763,共7页
针对合同中实体表达形式复杂多变、识别粒度细的特点,及合同文本中实体较长问题,提出一种融合词汇边界信息的合同实体识别方法。利用预训练语言模型动态生成语义向量作为模型输入;运用相对位置编码对Transformer结构进行改进,使其在编... 针对合同中实体表达形式复杂多变、识别粒度细的特点,及合同文本中实体较长问题,提出一种融合词汇边界信息的合同实体识别方法。利用预训练语言模型动态生成语义向量作为模型输入;运用相对位置编码对Transformer结构进行改进,使其在编码过程中融合词汇信息,进一步丰富语义特征;通过条件随机场(CRF)结构进行解码,得到输入序列的标签预测。实验结果表明,该方法可以有效确定合同文本中的实体边界,具有良好的泛化性能。 展开更多
关键词 实体识别 合同文本 预训练语言模型 相对位置编码 转换器结构 词汇边界信息 条件随机场
在线阅读 下载PDF
全局-局部信息增强的捆绑列表推荐 被引量:1
7
作者 杜云龙 卢敏 《计算机工程与设计》 北大核心 2024年第9期2866-2873,共8页
为解决捆绑列表推荐中会话兴趣表征不充分,以及预构建捆绑包不能根据会话动态兴趣进行个性化推荐的问题,提出一种全局-局部信息增强的捆绑列表生成网络。利用包含相对位置编码的时间加权多头注意力机制提取会话的全局信息,结合设计的多... 为解决捆绑列表推荐中会话兴趣表征不充分,以及预构建捆绑包不能根据会话动态兴趣进行个性化推荐的问题,提出一种全局-局部信息增强的捆绑列表生成网络。利用包含相对位置编码的时间加权多头注意力机制提取会话的全局信息,结合设计的多粒度深度可分离卷积融合会话的局部信息,通过自回归捆绑列表生成网络生成多样化的捆绑列表。在亚马逊数据集上进行广泛的实验,对生成捆绑包的大小进行分析,模型效果相比其它最优基准模型平均提升了15.19%。 展开更多
关键词 捆绑列表推荐 会话推荐 多头注意力机制 深度可分离卷积 相对位置编码 自回归模型 波束搜索
在线阅读 下载PDF
一种改进的DETR输电线通道山火烟雾检测方法 被引量:5
8
作者 张政 何慧 《小型微型计算机系统》 CSCD 北大核心 2024年第3期670-675,共6页
输电线通道中的火灾会对电力系统的正常运行造成极大的安全隐患,但由于山火烟雾的形状、大小和颜色变化多样导致传统图像方法检测精度较差.为了提高山火检测精度,本文提出一种基于改进DETR的输电线通道山火检测方法.首先,在特征提取阶... 输电线通道中的火灾会对电力系统的正常运行造成极大的安全隐患,但由于山火烟雾的形状、大小和颜色变化多样导致传统图像方法检测精度较差.为了提高山火检测精度,本文提出一种基于改进DETR的输电线通道山火检测方法.首先,在特征提取阶段加入多尺度特征信息,并利用空洞卷积提高算法对底层特征的感知能力;然后,引入相对位置编码对Transformer模块中的自注意力机制进行改进;其次,利用CIOU对算法的损失函数进行调整;最后,在标注好的输电线通道山火数据集上对改进后算法进行模型训练和测试.实验结果表明,本文所提出的改进后的DETR模型平均精度可达到84.77%,与原始DETR算法相比提高了6.52%,与其它主流目标检测算法对比,本文提出的山火检测模型可有效识别输电线通道中的山火目标并达到较高的检测精度. 展开更多
关键词 山火烟雾检测 深度学习 目标检测 多尺度特征信息 相对位置编码
在线阅读 下载PDF
基于VMD和RDC-Informer的短期供热负荷预测模型 被引量:3
9
作者 谭全伟 薛贵军 谢文举 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期39-51,共13页
精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数... 精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数据的非平稳性;然后在Informer模型中引入相对位置编码代替绝对位置编码,以更好地捕捉序列数据中的依赖关系和避免信息泄漏;接着采用膨胀因果卷积代替正则卷积,增加感受野,提升局部信息的提取能力;最后在多个数据集上与主流预测模型(GRU、LSTM、Transformer和Informer)进行对比实验。结果表明,RDC-Informer模型的评价指标R2达到了98.3%,与对比模型相比,分别提高了11.6%、6.3%、4.7%和2.6%。此外,通过增加卷积核以评估膨胀因果卷积的效果,验证了RDC-Informer模型的适用性和准确性,为进一步提高智慧供热的时效性提供了一定参考。 展开更多
关键词 供热负荷预测 INFORMER 膨胀因果卷积 相对位置编码 VMD
在线阅读 下载PDF
基于RPEpose和XJ-GCN的轻量级跌倒检测算法框架
10
作者 梁睿衍 杨慧 《计算机应用》 CSCD 北大核心 2024年第11期3639-3646,共8页
传统的以ViT(Vision Transformer)模型为基准架构的关节点检测模型通常采用二维正弦位置编码,易丢失图像关键的二维形状信息,导致精度下降;而行为分类模型中,传统的时空图卷积网络(ST-GCN)在单标签分区策略中存在非物理连接的关节连接... 传统的以ViT(Vision Transformer)模型为基准架构的关节点检测模型通常采用二维正弦位置编码,易丢失图像关键的二维形状信息,导致精度下降;而行为分类模型中,传统的时空图卷积网络(ST-GCN)在单标签分区策略中存在非物理连接的关节连接间关联度缺失问题。针对上述问题,设计一种轻量化实时跌倒检测算法框架,以快速准确地检测跌倒行为。该框架包含关节点检测模型RPEpose(Relative Position Encoding pose estimation)和行为分类模型XJ-GCN(Cross-Joint attention Graph Convolutional Network)。一方面,RPEpose模型采用相对位置编码克服原有位置编码的位置不敏感的缺陷,提升ViT架构在关节点检测中的性能;另一方面,提出X-Joint(Cross-Joint)注意力机制,将分区策略重构为XJL(X-Joint Labeling)分区策略后,对所有关节连接之间的依赖关系建模,能获得关节连接潜在相关性,具有分类性能优异且参数量小的优势。实验结果表明,在COCO 2017验证集上,对于分辨率为256×192的图像,RPEpose模型的计算开销仅为8.2 GFLOPs(Giga FLOating Point of operations),测试平均精度(AP)为74.3%;在以交叉目标(X-Sub)为划分标准的NTU RGB+D数据集上,XJ-GCN模型的测试Top-1准确率为89.6%,所提框架RPEpose+XJ-GCN的处理速度为30 frame/s,预测准确率为87.2%,具有较高的实时性和准确性。 展开更多
关键词 跌倒检测 关节点检测 相对位置编码 时空图卷积网络 注意力机制
在线阅读 下载PDF
基于注意力网络的情感分析中的对比句处理
11
作者 张蓉 刘渊 李阳 《计算机应用研究》 CSCD 北大核心 2022年第9期2695-2700,2716,共7页
方面级情感分析旨在确定评论中对特定方面的情绪极性,但目前较少研究复杂句对情感分类的影响。基于此,提出了一种基于BERT和带相对位置自注意力网络的方面级情感分析模型。首先,通过动态加权采样方法平衡对比句稀缺的问题,使模型学习到... 方面级情感分析旨在确定评论中对特定方面的情绪极性,但目前较少研究复杂句对情感分类的影响。基于此,提出了一种基于BERT和带相对位置自注意力网络的方面级情感分析模型。首先,通过动态加权采样方法平衡对比句稀缺的问题,使模型学习到更多的对比句特征信息;其次,利用双头自注意力网络提取带相对位置的特征表示,与预训练模型得到的带绝对位置的特征表示联合训练;最后,通过标签平衡技术对模型正则化处理,稳定模型对中性样本的辨识。该模型在SemEval 2014 Task 4 Sub Task 2上进行实验,在两个数据集上的accuracy和macro-F_(1)指标都有所提高。实验结果表明,该模型在对比句分类上是有效的,同时在整个测试集上分类也优于其他基准模型。 展开更多
关键词 方面级情感分析 对比句 注意力网络 BERT模型 相对位置编码
在线阅读 下载PDF
基于改进Transformer模型的运动想象脑电分类方法研究 被引量:2
12
作者 刘月峰 刘好峰 +2 位作者 王越 刘博 暴祥 《计量学报》 CSCD 北大核心 2023年第7期1147-1153,共7页
运动想象(MI)脑电信号本身是由一组较长且连续的特征值组成的信号序列,传统Transformer模型无法捕捉较长序列之间的依赖,设置固定长度的序列又会产生碎片化问题,因此有待进一步调整和优化。针对上述问题,在传统Transformer模型中加入了... 运动想象(MI)脑电信号本身是由一组较长且连续的特征值组成的信号序列,传统Transformer模型无法捕捉较长序列之间的依赖,设置固定长度的序列又会产生碎片化问题,因此有待进一步调整和优化。针对上述问题,在传统Transformer模型中加入了片段重用的循环机制和重用之前片段信息的相对位置编码机制,使Transformer模型能够学习更长特征序列的特征信息,同时解决重用片段之间的位置编码信息错乱和重用等问题。然后,通过并行多分支CNN进一步捕捉脑电局部特征。最后,利用竞赛数据集2008 BCI-Competition 2A对改进的Transformer模型性能进行评估。结果表明,在不做任何人工特征提取的前提下,对于四分类数据集,改进Transformer模型的平均准确率和kappa值分别为94.27%和87.34%。 展开更多
关键词 计量学 脑电信号 运动想象 脑机接口 卷积神经网络 Transformer模型 片段循环机制 相对位置编码
在线阅读 下载PDF
基于循环扩张机制的ConvGRU-Transformer短期电力负荷预测方法 被引量:11
13
作者 遆宝中 李庚银 +3 位作者 武昭原 王剑晓 周明 李瑞连 《华北电力大学学报(自然科学版)》 CAS 北大核心 2022年第3期34-43,共10页
Transformer作为一种建立在自注意力机制上的新颖神经网络模型,其所具有的高度并行化计算结构和有效捕捉序列长期依赖性的能力为短期电力负荷预测带来了新的发展空间。舍弃递归与卷积结构为提取序列关联性提供便利,同时也导致信息碎片... Transformer作为一种建立在自注意力机制上的新颖神经网络模型,其所具有的高度并行化计算结构和有效捕捉序列长期依赖性的能力为短期电力负荷预测带来了新的发展空间。舍弃递归与卷积结构为提取序列关联性提供便利,同时也导致信息碎片化。为充分挖掘注意力模型潜力,提出了一种基于循环扩张机制的卷积门控循环单元(Convolutional Gated Recurrent Unit,ConvGRU)-Transformer短期电力负荷预测方法。针对输入序列分割影响长期特征提取的问题,提出一种循环扩张注意力机制,在提高计算效率的同时扩大了学习视野。为保证注意力视野扩大后信息位置的一致性,建立了一种基于ConvGRU的全局位置编码方法。实验结果表明与常规方法相比,所提方法有更高的预测精度和良好的可解释性。 展开更多
关键词 短期负荷预测 自注意力机制 循环扩张机制 相对位置编码 门控循环单元
在线阅读 下载PDF
基于改进自注意力神经网络的X光安检识别 被引量:5
14
作者 张弘 刘保洋 高月 《激光杂志》 CAS 北大核心 2023年第12期47-55,共9页
针对X光安检图像中存在背景信息复杂以及物体相互遮挡的情况,以YOLOv5m模型为基础,改进自注意力机制,提出新的视觉自注意力机制与卷积模型结合的叠加混合模型YOLOv5m-CRCS。该网络在视觉自注意力机制中,加入相对位置编码,引入高效变体卷... 针对X光安检图像中存在背景信息复杂以及物体相互遮挡的情况,以YOLOv5m模型为基础,改进自注意力机制,提出新的视觉自注意力机制与卷积模型结合的叠加混合模型YOLOv5m-CRCS。该网络在视觉自注意力机制中,加入相对位置编码,引入高效变体卷积(TVConv)和动态归一化(DTN),增强图像特征中的全局语义信息和位置信息。在网络特征融合阶段将坐标注意力(CA)与改进后的自注意力机制结合,进一步加强输出特征中的位置关系信息,同时引入改进的双自注意力模块,将残差卷积模块(CSPLayer)与双自注意力叠加混合,使得每个输出在原有特征的基础上增加了全局特征的相关性。在X光安检数据集上的实验结果表明,与原始目标检测网络相比,所提出模型的识别精度提高了4.72%,明显降低了由于X光安检图像中的背景信息复杂、相互遮挡而出现的漏检情况。 展开更多
关键词 目标检测 自注意力 相对位置编码 视觉注意力 X光 神经网络
在线阅读 下载PDF
基于图神经网络的固定骨架蛋白质设计方法研究
15
作者 刘炎 袁野 沈红斌 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期311-317,329,共8页
针对图神经网络(GNN)ProteinSolver结构特征约束不充分的问题,增加了骨架二面角、配对氨基酸的相对位置编码和相对方向等结构约束,提出了一种基于GNN的固定骨架蛋白质设计方法。实现了基于Transformer多头注意力机制的GNN架构,将物理坐... 针对图神经网络(GNN)ProteinSolver结构特征约束不充分的问题,增加了骨架二面角、配对氨基酸的相对位置编码和相对方向等结构约束,提出了一种基于GNN的固定骨架蛋白质设计方法。实现了基于Transformer多头注意力机制的GNN架构,将物理坐标添加到消息传递和更新步骤中,提高了原子坐标的等变特性。在CATH数据集上的训练和测试结果显示:该文模型平均困惑度为8.12,比ProteinSolver的平均困惑度8.97降低了0.85;在掩盖率为50%时,ProteinSolver的恢复率为28.7%;然后,增加更多的结构约束,恢复率达到了30.3%;随后,将ProteinSolver的GNN替换成基于Transformer的GNN,恢复率达到了34.3%;最后,通过再引入等变特性,恢复率进一步提高到35.0%。 展开更多
关键词 图神经网络 固定骨架蛋白质 蛋白质设计 结构特征约束 骨架二面角 配对氨基酸 相对位置编码 相对方向
在线阅读 下载PDF
Transformer神经网络和轴心轨迹在燃机转子故障诊断中的应用 被引量:2
16
作者 章明明 蒋欢春 +1 位作者 茅大钧 董渊博 《噪声与振动控制》 CSCD 北大核心 2023年第1期110-115,153,共7页
针对目前国内燃机电厂转子故障诊断主要依靠振动分析,无自动识别轴心轨迹设备的现状,将在自然语言处理领域大放异彩的Transformer神经网络引入转子轴心轨迹监测与识别领域,通过独立成分分析(Independent Component Analysis,ICA)与Trans... 针对目前国内燃机电厂转子故障诊断主要依靠振动分析,无自动识别轴心轨迹设备的现状,将在自然语言处理领域大放异彩的Transformer神经网络引入转子轴心轨迹监测与识别领域,通过独立成分分析(Independent Component Analysis,ICA)与Transformer结合提升燃机转子故障诊断准确性。使用ICA代替Transformer自身的线性变换提取图片特征信息构建输入样本,为了解决自注意力机制无法捕捉位置信息的问题,提出相对位置编码方法,区别于使用较多的绝对位置编码,通过嵌入相对位置编码子层,将相对位置信息注入自注意力机制,使得Attention模块能够学习到序列的相对位置信息,可进一步提高图像识别模型的准确性,该模型对于轴心轨迹故障类型平均识别率达到93.8%。实验结果表明ICA-Transformer模型对转子轴心轨迹的识别准确率较高,对电厂运维具有一定的指导意义。 展开更多
关键词 故障诊断 轴心轨迹 Transformer神经网络 独立成分分析 相对位置编码 图像识别
在线阅读 下载PDF
改进DAB⁃DETR算法的非规则交通对象检测
17
作者 林峰 宁琪琳 朱智勤 《现代电子技术》 2023年第21期141-148,共8页
非规则交通对象主要指任何在车辆行驶过程中可能对车辆行驶起到阻碍作用的物体,例如坑洼、落石、树枝等影响车辆正常驾驶的目标。针对道路中的非规则交通对象检测问题,提出一种基于改进DAB⁃DETR算法的非规则交通对象目标检测算法,经过... 非规则交通对象主要指任何在车辆行驶过程中可能对车辆行驶起到阻碍作用的物体,例如坑洼、落石、树枝等影响车辆正常驾驶的目标。针对道路中的非规则交通对象检测问题,提出一种基于改进DAB⁃DETR算法的非规则交通对象目标检测算法,经过对原始模型结构的分析,发现在图像特征输入编码器前加入绝对位置编码来弥补图像位置信息的缺失,只能隐式地表达特征间的相对位置信息,因此改进DAB⁃DETR在Transformer的编码结构中的多头自注意力机制中添加了针对图像的相对位置编码;其次发现在原始训练策略中,对得到的检测定位结果与类别信息进行二分匹配并计算损失值时,只是简单地将定位损失和分类损失加权求和,这样会导致性能下降,所以在训练策略中增加了将分类、定位损失集成在一个统一参数化公式中的AP损失函数。实验结果表明:改进DAB⁃DETR算法的检测精度达到了82.00%,比原始模型提高了3.3%,比传统模型Faster R⁃CNN、YOLOv5分别提高了6.20%、7.71%。 展开更多
关键词 非规则交通对象 目标检测 DAB⁃DETR算法 相对位置编码 AP损失函数 消融实验
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部