期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于改进掩码-区域卷积神经网络的混凝土病害实例分割 被引量:9
1
作者 黄彩萍 谢鑫 +1 位作者 周永康 李桂龙 《桥梁建设》 EI CSCD 北大核心 2023年第6期63-70,共8页
为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResN... 为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResNet101),加入路径聚合网络(PANet),以提高Mask-RCNN提取浅层特征信息的能力。为验证改进Mask-RCNN的识别精度及其在实际工程中的可行性,首先构建多类混凝土病害图像数据集,利用K-means聚类算法确定最适合该数据集的先验边界框的长宽比,然后对比改进Mask-RCNN与原始Mask-RCNN、其它主流深度学习网络对混凝土五类病害(裂缝、露筋、剥落、白皙和空洞)的识别结果;最后利用无人机采集到的钢筋混凝土桥梁病害图像作为测试集进行测试。结果表明:改进Mask-RCNN在提高计算速度的同时能更准确地定位病害,减少了误检和漏检,识别精度高于原始Mask-RCNN及其它深度学习网络;改进Mask-RCNN可以识别无人机拍摄的未经训练的新的混凝土病害图像,识别精度满足实际工程需求。 展开更多
关键词 桥梁工程 混凝土病害 深度学习 掩码-区域卷积神经网络 可移动网络 K-MEANS聚类算法 病害识别
在线阅读 下载PDF
基于深度卷积神经网络的糖尿病视网膜病变分期及病灶检测 被引量:13
2
作者 谢云霞 黄海于 胡建斌 《计算机应用》 CSCD 北大核心 2020年第8期2460-2464,共5页
针对糖尿病视网膜病变(DR)图像分辨率过大、病灶特征过于分散难以获取以及正负难易样本不平衡而导致DR分期精确率一直无法得到有效提高的问题,提出了改进的基于快速区域的卷积神经网络(Faster R-CNN)和子图分割相结合的DR分期方法。首先... 针对糖尿病视网膜病变(DR)图像分辨率过大、病灶特征过于分散难以获取以及正负难易样本不平衡而导致DR分期精确率一直无法得到有效提高的问题,提出了改进的基于快速区域的卷积神经网络(Faster R-CNN)和子图分割相结合的DR分期方法。首先,使用子图分割解决视盘区域对于病灶识别的干扰问题;其次,在特征提取阶段使用深度残差网络以解决病灶在高分辨率眼底图像中占比小而导致的特征难以获取的问题;最后,在感兴趣区域(ROI)生成时采用在线困难样本挖掘(OHEM)方法解决正负难易样本不平衡的问题。在国际公开数据集EyePACS进行DR分期实验,所提方法在DR病分期中精确率0期达到94.83%,1期达到86.84%,2期达到94.00%,3期达到87.21%,4期达到82.96%。实验结果表明,改进后的Faster R-CNN能对DR图像高效分期并自动标注出病灶。 展开更多
关键词 糖尿病视网膜病变 目标检测 基于快速区域卷积神经网络算法 子图分割 在线困难样本挖掘
在线阅读 下载PDF
基于卷积神经网络的生产日期识别 被引量:6
3
作者 胡蝶 侯俊 +2 位作者 张全年 何金亭 王宗宜 《电子测量技术》 2020年第1期152-156,共5页
为了提高识别效率并减少人工成本,采用深度学习的方法对生产日期图像进行识别。首先对生产日期图像进行预处理,使用水平投影分割算法并提出一种区域最大值分割的方法将图像中的干扰字符去除,只留下数字、字母和汉字字符。然后创建一个... 为了提高识别效率并减少人工成本,采用深度学习的方法对生产日期图像进行识别。首先对生产日期图像进行预处理,使用水平投影分割算法并提出一种区域最大值分割的方法将图像中的干扰字符去除,只留下数字、字母和汉字字符。然后创建一个由生产日期图像中常包含的数字、英文、汉字字符所组成的可扩展的数据集。最后构建一个卷积神经网络模型并将数据集送入训练以获得较高的识别准确率。经测试基于卷积神经网络的识别方法对生产日期识别的准确率高达98%。 展开更多
关键词 生产日期识别 卷积神经网络 区域最大值分割算法 投影分割算法
在线阅读 下载PDF
条件随机场像素建模与深度特征融合的目标区域分割算法 被引量:11
4
作者 李宗民 徐希云 +1 位作者 刘玉杰 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第6期1000-1007,共8页
针对已有的基于深度神经网络的目标区域分割算法在目标边界分割效果中存在的问题,提出融合图像像素信息与图像语义信息的目标区域分割算法.首先通过加入注意力模块的深度神经网络提取图像语义级别的信息,得到图像语义级别的全局特征;然... 针对已有的基于深度神经网络的目标区域分割算法在目标边界分割效果中存在的问题,提出融合图像像素信息与图像语义信息的目标区域分割算法.首先通过加入注意力模块的深度神经网络提取图像语义级别的信息,得到图像语义级别的全局特征;然后利用条件随机场模型对图像局部区域进行像素级别建模,得到图像的局部细节特征;最后综合利用图像的局部细节特征和图像的全局特征,得到目标区域的分割结果.实验结果表明,与已有的算法相比,该算法能够更好地分割出目标的边界区域,抑制边界区域分割粗糙的问题,得到较准确的目标分割区域. 展开更多
关键词 注意力模块 条件随机场 卷积神经网络 目标区域分割
在线阅读 下载PDF
梯度区分与特征范数驱动的开放世界目标检测
5
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
改进Mask R-CNN的遥感图像多目标检测与分割 被引量:14
6
作者 李森森 吴清 《计算机工程与应用》 CSCD 北大核心 2020年第14期183-190,共8页
针对高分辨率遥感图像在目标检测与分割中特征提取困难、准确率低、虚假率高等问题,提出了一种改进的Mask R-CNN卷积神经网络。该网络以ResNet50为特征提取网络,在此基础上利用自下而上和自上而下两种分层跳连融合方式来进行更好的图像... 针对高分辨率遥感图像在目标检测与分割中特征提取困难、准确率低、虚假率高等问题,提出了一种改进的Mask R-CNN卷积神经网络。该网络以ResNet50为特征提取网络,在此基础上利用自下而上和自上而下两种分层跳连融合方式来进行更好的图像特征提取。针对遥感图像不同目标间尺寸差异过大、目标易丢失的问题,设计了自适应感兴趣区域来进行感兴趣区域提取。在目标分割中,使用局部融合全连接的卷积神经网络替换原全卷积神经网络,并使用上采样操作替换反卷积操作。在NWPU VHR-10数据集上进行验证,结果表明该方法与现有常用方法相比,显著地提高了遥感图像中多目标检测与分割的准确率。 展开更多
关键词 卷积神经网络 分层跳连融合 自适应感兴趣区域提取 目标检测分割 局部融合全连接卷积网络
在线阅读 下载PDF
基于CNN的SAR图像舰船目标检测算法 被引量:3
7
作者 曲长文 刘晨 +2 位作者 周强 李智 李健伟 《火力与指挥控制》 CSCD 北大核心 2019年第1期40-44,共5页
为了提升合成孔径雷达(Synthetic Aperture Radar,SAR)图像舰船目标检测的精度和速度,对卷积神经网络(Convolutional Neural Network,CNN)在SAR图像舰船目标检测上进行了研究。通过改进OTSU方法对SAR图像进行分割,并且用最小外接矩形将... 为了提升合成孔径雷达(Synthetic Aperture Radar,SAR)图像舰船目标检测的精度和速度,对卷积神经网络(Convolutional Neural Network,CNN)在SAR图像舰船目标检测上进行了研究。通过改进OTSU方法对SAR图像进行分割,并且用最小外接矩形将疑似目标标记出来;依据矩形中心在原始图像上提取出固定大小区域作为候选区域;将提取的目标通过训练好的卷积神经网络进行判定,去除虚警目标并将检测结果在原图中标记出来。实测数据的实验结果表明,该算法在降低虚警的同时提升了检测速度。 展开更多
关键词 合成孔径雷达 卷积神经网络 目标检测 图像分割 候选区域提取
在线阅读 下载PDF
基于CFRP-DDRCNN的CFRP缺陷检测方法
8
作者 章栩苓 周正东 +4 位作者 毛玲 张灵维 魏士松 盛涛 郑金华 《振动.测试与诊断》 北大核心 2025年第3期589-593,627,共6页
针对碳纤维增强复合材料(carbon fiber reinforced polymer,简称CFRP)缺陷检测通常由人工进行,存在检测效率低和漏检等问题,以掩码区域卷积神经网络(mask region based convolution nerual network,简称Mask R-CNN)为基础,提出了一种新... 针对碳纤维增强复合材料(carbon fiber reinforced polymer,简称CFRP)缺陷检测通常由人工进行,存在检测效率低和漏检等问题,以掩码区域卷积神经网络(mask region based convolution nerual network,简称Mask R-CNN)为基础,提出了一种新的碳纤维增强复合材料缺陷检测网络(carbon fiber reinforced polymer defect detect region based convolutional neural network,简称CFRP-DDRCNN)。首先,该网络前端设置了图像裁剪和背景去除模块(background removal module,简称BRM),以提升网络的缺陷检测效率和精度;其次,引入分割图像数据集,将其和原图像数据集一起进行网络训练,以提高网络的缺陷检测精度;然后,引入注意力机制,提高网络的缺陷特征提取能力;最后,通过缺陷尺寸聚类对锚框参数进行优化,以提高缺陷检测精度。实验结果表明,所提出的CFRP-DDRCNN具有良好的CFRP缺陷检测性能,能有效提高CFRP缺陷的检测精度,与Mask R-CNN相比,CFRP-DDRCNN使CFRP缺陷检测的平均精准度提高了87.74%。 展开更多
关键词 碳纤维增强复合材料 掩码区域卷积神经网络 图像分割 碳纤维增强复合材料缺陷检测网络 缺陷检测
在线阅读 下载PDF
基于改进YOLOv8的风电叶片表面损伤检测与识别方法 被引量:6
9
作者 吴博阳 毛胜轲 +3 位作者 林特宇 任浩杰 蔡海洋 李扬 《机电工程》 CAS 北大核心 2024年第7期1260-1268,共9页
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,... 针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8模型对叶片损伤的检测精度。研究结果表明:改进后的YOLOv8模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型。改进后的YOLOv8模型在交并比(IoU)阈值为0.5时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性。 展开更多
关键词 风电叶片损伤识别 YOLOv8 目标检测 数据增强算法 卷积注意力模块 梯度协调机制 平均精度 平均召回率 快速区域卷积神经网络 交并比
在线阅读 下载PDF
基于改进Mask-RCNN的飞行器结构裂纹自动检测方法 被引量:10
10
作者 吕帅帅 杨宇 +1 位作者 王彬文 裴连杰 《振动.测试与诊断》 EI CSCD 北大核心 2021年第3期487-494,620,共9页
计算机视觉的裂纹自动识别算法在飞机结构疲劳试验中具有较好的工程应用前景,但由于飞机结构构型多样及疲劳试验环境复杂,传统方法的裂纹识别准确率难以满足要求。针对此问题,设计了一种基于关键结构定位的检测策略,并以目标分割算法掩... 计算机视觉的裂纹自动识别算法在飞机结构疲劳试验中具有较好的工程应用前景,但由于飞机结构构型多样及疲劳试验环境复杂,传统方法的裂纹识别准确率难以满足要求。针对此问题,设计了一种基于关键结构定位的检测策略,并以目标分割算法掩码-区域卷积神经网络(Mask-regionconvolutionalneuralnetwork,简称Mask-RCNN)为基础对模型架构和非极大值抑制模块进行了适应性改进,提出了一种裂纹自动识别方法。该方法具有主动避开干扰因素、对图片质量要求较低的特点,同时利用Mask-RCNN将像素信息引入参数优化的特性,具备更高的识别准确率。在元件疲劳试验中,该方法对铆钉、裂纹的识别准确率分别为100%和87.5%,相较于现有方法优势显著。 展开更多
关键词 机器视觉 裂纹 深度学习 目标分割算法掩码‐区域卷积神经网络
在线阅读 下载PDF
带式输送机上散状物料堆积视频实时检测 被引量:7
11
作者 唐俊 李敬兆 +3 位作者 石晴 刘阳 宋世现 任成成 《工矿自动化》 北大核心 2022年第10期62-68,75,共8页
针对非接触式散状物料堆积检测方法存在检测速度慢、在图像模糊场景下检测精度低、深度学习模型内存需求大等问题,提出了一种基于轻量化Mask-RCNN(掩码-区域卷积神经网络)的带式输送机上散状物料堆积视频实时检测方法。首先,通过暗通道... 针对非接触式散状物料堆积检测方法存在检测速度慢、在图像模糊场景下检测精度低、深度学习模型内存需求大等问题,提出了一种基于轻量化Mask-RCNN(掩码-区域卷积神经网络)的带式输送机上散状物料堆积视频实时检测方法。首先,通过暗通道先验算法对采集的图像进行预处理,以减少运输装载过程中粉尘造成的图像雾化现象,提高图像边缘特征。针对传统的Mask-RCNN的主干网络ResNet无法满足在嵌入式平台上对散状物料堆积进行实时检测的需求问题,将去雾预处理后的图像输入到基于MobileNetV2+特征金字塔网络(FPN)的主干网络中进行特征提取,生成特征图,并对主干网络进行轻量化设计,以部署在嵌入式平台上,对实时采集图像数据进行实例分割。为更精确地找到分割物体的边缘,提出了在传统Mask-RCNN的掩码分支中添加边缘损失的方法,利用全卷积网络层生成掩码,结合Scharr算子构造边缘损失函数,融合目标分类、边界框回归、语义信息得到实例分割图像。最后,通过判断散状物料堆积掩码内的像素值是否超过预设阈值实现散状物料堆积检测。实验结果表明:所提方法的模型内存需求降低到以ResNet101为主干网络的模型的1/5,经图像去雾预处理后的平均精度均值提高了8%,单张图像平均检测时间为0.56 s,检测精度可达91.8%。 展开更多
关键词 矿用带式输送机 散状物料运输 物料堆积 视频实时检测 图像处理 暗通道先验算法 掩码-区域卷积神经网络 轻量化主干网络
在线阅读 下载PDF
《计算机应用》2019年第39卷第1~12期总目次
12
《计算机应用》 CSCD 北大核心 2019年第12期I0001-I0016,共16页
关键词 卷积神经网络 《计算机应用》 图像超分辨率重建 入侵检测方法 注意力机制 卷积 特征选择方法 长短期记忆模型 目标跟踪算法 非负矩阵分解 图像增强算法 孪生网络 杨晓敏 残差网络 神经网络模型 图像分割 目标粒子群优化算法 拜占庭容错
在线阅读 下载PDF
《计算机工程与设计》2019年第40卷总目次
13
《计算机工程与设计》 北大核心 2019年第12期I0001-I0015,共15页
关键词 卷积神经网络 组稀疏表示 文本分类算法 多特征融合 特征选择方法 图像分割算法 人脸超分辨率 核相关滤波 目标检测算法 吕学强 人体动作识别 网络入侵检测 命名实体识别 提取算法 离群点检测 残差网络 快速匹配算法 《计算机工程与设计》
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部