Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre...Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo oh...For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo ohms. A differential paired eFuse cell is designed which is about half the size smaller in sensing resistance of a programmed eFuse link than the conventional single-ended eFuse cell. Also, a sensing circuit of sense amplifier is proposed, based on D flip-flop structure to implement a simple sensing circuit. Furthermore, a sensing margin test circuit is proposed with variable pull-up loads out of consideration for resistance variation of a programmed eFuse. When an 8 bit eFuse OTP IP is designed with 0.18 ~tm standard CMOS logic of TSMC, the layout dimensions are 229.04 μm ×100.15μm. All the chips function successfully when 20 test chips are tested with a program voltage of 4.2 V.展开更多
An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topo...An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.展开更多
This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode ob...This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.展开更多
The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans w...The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.展开更多
基金the funding from Lembaga Penelitian dan Pengabdian Masyarakat(LPPM)Universitas Indonesia,by Riset Kolaborasi Indonesia(RKI)-World Class University(WCU)Program with grant number NKB-1067/UN2-RST/HKP.05.00/2023 and NKB-781/UN2.RST/HKP.05.00/2024.
文摘Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
文摘For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo ohms. A differential paired eFuse cell is designed which is about half the size smaller in sensing resistance of a programmed eFuse link than the conventional single-ended eFuse cell. Also, a sensing circuit of sense amplifier is proposed, based on D flip-flop structure to implement a simple sensing circuit. Furthermore, a sensing margin test circuit is proposed with variable pull-up loads out of consideration for resistance variation of a programmed eFuse. When an 8 bit eFuse OTP IP is designed with 0.18 ~tm standard CMOS logic of TSMC, the layout dimensions are 229.04 μm ×100.15μm. All the chips function successfully when 20 test chips are tested with a program voltage of 4.2 V.
基金Project(2012AA051601)supported by the High-Tech Research and Development Program of China
文摘An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.
基金Project(2012(PS-2012-090))supported by the Pukyong National University Research Abroad Fund,Korea
文摘This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.
基金Project(2011CB610500)supported by the National Key Basic Research Program of ChinaProject(13JCZDJC29500)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject(20130032110029)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.