Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during ...Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during charge discharge cycles and poor electrical conductivity.This study employs a Sn-based metal-organic framework(Sn-MOF)as a precursor for synthesizing tin phosphide nanoparticles.Then Solidago Canadensis L.,commonly known as Canadian Goldenrod,is utilized as a biomass carbon carrier to form a composite with tin phosphide nanoparticles.The biomass derived porous carbon provides additional sodium ion storage sites and serves as a structural scaffold that constrains the volumetric expansion of tin phosphide,thereby enhancing the material’s stability.The fabricated composite exhibits superior electrode electrochemical performance for sodium-ion batteries.It retains a high capacity(489.5 mA·h/g)after 100 cycles at 0.2 A/g.Even after 500 cycles at a high current density of 2 A/g,it still maintains a stable reversible capacity.This study offers a comprehensive exploration of innovative design strategies essential for the development of novel anode materials,paving the way for more sustainable and efficient sodium-ion-based energy storage systems.展开更多
文摘Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during charge discharge cycles and poor electrical conductivity.This study employs a Sn-based metal-organic framework(Sn-MOF)as a precursor for synthesizing tin phosphide nanoparticles.Then Solidago Canadensis L.,commonly known as Canadian Goldenrod,is utilized as a biomass carbon carrier to form a composite with tin phosphide nanoparticles.The biomass derived porous carbon provides additional sodium ion storage sites and serves as a structural scaffold that constrains the volumetric expansion of tin phosphide,thereby enhancing the material’s stability.The fabricated composite exhibits superior electrode electrochemical performance for sodium-ion batteries.It retains a high capacity(489.5 mA·h/g)after 100 cycles at 0.2 A/g.Even after 500 cycles at a high current density of 2 A/g,it still maintains a stable reversible capacity.This study offers a comprehensive exploration of innovative design strategies essential for the development of novel anode materials,paving the way for more sustainable and efficient sodium-ion-based energy storage systems.