为研究覆冰复合绝缘子的电气特性,基于ANSYS有限元法建立了330 k V覆冰复合绝缘子模型,分别模拟仿真了干、湿覆冰情况下,不同空气间隙位置及冰棱长度对覆冰复合绝缘子的沿面电场、电位分布的影响,并与清洁复合绝缘子进行比较分析。结果...为研究覆冰复合绝缘子的电气特性,基于ANSYS有限元法建立了330 k V覆冰复合绝缘子模型,分别模拟仿真了干、湿覆冰情况下,不同空气间隙位置及冰棱长度对覆冰复合绝缘子的沿面电场、电位分布的影响,并与清洁复合绝缘子进行比较分析。结果表明:与清洁复合绝缘子相比,覆冰明显畸变了复合绝缘子的沿面电场和电位分布;当覆冰未完全桥接大伞裙间时,随着冰棱长度的增长,对沿面电位和电场分布的畸变程度越严重。当融冰过程中形成水膜时,覆冰复合绝缘子的沿面电场和电位分布进一步畸变,此时更容易发生局部放电。展开更多
严重覆冰时采用大小伞结构的复合绝缘子依然出现冰凌桥接现象。为防止出现冰凌桥接和覆冰闪络,开展超大伞裙结构复合绝缘子的覆冰特性研究有着重要意义。建立220 k V的超大伞裙结构复合绝缘子二维轴对称模型,并采用准静态场有限像元法...严重覆冰时采用大小伞结构的复合绝缘子依然出现冰凌桥接现象。为防止出现冰凌桥接和覆冰闪络,开展超大伞裙结构复合绝缘子的覆冰特性研究有着重要意义。建立220 k V的超大伞裙结构复合绝缘子二维轴对称模型,并采用准静态场有限像元法进行仿真分析,对比采用不同数量的超大伞裙绝缘子在清洁和覆有干、湿冰时绝缘子的电位、电场分布。发现清洁时,超大伞裙对电位、电场分布不产生影响,在覆有干、湿冰时,超大伞裙提供的多个空气间隙,能有效改善绝缘子的电位、电场分布,特别是靠近高压端的第1个伞裙采用超大伞裙结构能改善高压端电位分布。最后结合仿真数据提出了优化后的超大伞裙结构的复合绝缘子。展开更多
Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field ...Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.展开更多
A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mod...A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.展开更多
文摘为研究覆冰复合绝缘子的电气特性,基于ANSYS有限元法建立了330 k V覆冰复合绝缘子模型,分别模拟仿真了干、湿覆冰情况下,不同空气间隙位置及冰棱长度对覆冰复合绝缘子的沿面电场、电位分布的影响,并与清洁复合绝缘子进行比较分析。结果表明:与清洁复合绝缘子相比,覆冰明显畸变了复合绝缘子的沿面电场和电位分布;当覆冰未完全桥接大伞裙间时,随着冰棱长度的增长,对沿面电位和电场分布的畸变程度越严重。当融冰过程中形成水膜时,覆冰复合绝缘子的沿面电场和电位分布进一步畸变,此时更容易发生局部放电。
文摘严重覆冰时采用大小伞结构的复合绝缘子依然出现冰凌桥接现象。为防止出现冰凌桥接和覆冰闪络,开展超大伞裙结构复合绝缘子的覆冰特性研究有着重要意义。建立220 k V的超大伞裙结构复合绝缘子二维轴对称模型,并采用准静态场有限像元法进行仿真分析,对比采用不同数量的超大伞裙绝缘子在清洁和覆有干、湿冰时绝缘子的电位、电场分布。发现清洁时,超大伞裙对电位、电场分布不产生影响,在覆有干、湿冰时,超大伞裙提供的多个空气间隙,能有效改善绝缘子的电位、电场分布,特别是靠近高压端的第1个伞裙采用超大伞裙结构能改善高压端电位分布。最后结合仿真数据提出了优化后的超大伞裙结构的复合绝缘子。
基金Project(2013CB036003)supported by the National Basic Research,Program of ChinaProject(2010QNA54)Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.
基金Projects(41204054,41541036,41604111)supported by the National Natural Science Foundation of China
文摘A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.