In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sink...In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.展开更多
Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations aroun...Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses...Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.展开更多
The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic micro...The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic microspheres were investigated by FT-IR spectrometer, dynamic laser scattering analyzer and scanning electron microscope, respectively. Bovine serum album(BSA)was chosen as model protein, and the adsorption processes were carried out under diversified conditions including BSA initial concentration, p H value, adsorption time and temperature to evaluate the performance of the magnetic microspheres. The average diameter of optimized spherical magnetic microspheres is 1.6 μm with excellent dispersivity, and the saturation magnetization is found to be equal to 1.056×10-2 A·m2. The adsorption isotherm of the BSA on the magnetic microspheres basically obeys the Langmuir model, with a maximum adsorption capacity of 120 mg/g and an adsorption equilibrium constant of 1.60 mL/mg.展开更多
A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mod...A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.展开更多
Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica...Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-...The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.展开更多
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capaci...A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.展开更多
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe...High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.展开更多
Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste...Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.展开更多
基金Project(50975059) supported by the National Natural Science Foundation of ChinaProject(2006AA04Z231) supported by the National High-Tech Research and Development Program of China+2 种基金Project(ZJG0709) supported by Key Natural Science Foundation of Heilongjiang Province of ChinaProject(B07018) supported by the Program of Introducing Talents of Discipline to UniversityProject (SKLRS200801A02) supported by Chinese State Key Laboratory of Robotics and System Foundation
文摘In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.
基金Project(140100153)supported by Australian Research Council Linkage Grant。
文摘Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Projects(41173055,41772118)supported by the National Natural Science Foundation of China
文摘Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.
基金Project(GC201204)supported by the Open Fund of Guangdong Provincial Key Laboratory for the Green Chemicals,China
文摘The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic microspheres were investigated by FT-IR spectrometer, dynamic laser scattering analyzer and scanning electron microscope, respectively. Bovine serum album(BSA)was chosen as model protein, and the adsorption processes were carried out under diversified conditions including BSA initial concentration, p H value, adsorption time and temperature to evaluate the performance of the magnetic microspheres. The average diameter of optimized spherical magnetic microspheres is 1.6 μm with excellent dispersivity, and the saturation magnetization is found to be equal to 1.056×10-2 A·m2. The adsorption isotherm of the BSA on the magnetic microspheres basically obeys the Langmuir model, with a maximum adsorption capacity of 120 mg/g and an adsorption equilibrium constant of 1.60 mL/mg.
基金Projects(41204054,41541036,41604111)supported by the National Natural Science Foundation of China
文摘A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金Project(NCET050630) supported by Program for New Century Excellent Talents in University,China
文摘Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
基金Project(41174008)supported by the National Natural Science Foundation of ChinaProject(SKLGED2013-4-2-EZ)supported by the Open Foundation of State Key Laboratory of Geodesy and Earth’s Dynamics,ChinaProject(2007B51)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
基金Projects(20676152, 20876178) supported by the National Natural Science Foundation of China
文摘A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.
基金Project(11174077)supported by the National Natural Science Foundation of ChinaProject(11JJ3079)supported by the Hunan Provincial Natural Science Foundation of ChinaProjects(12C0237,11C0844)supported by the Science Research Program of Education Department of Hunan Province,China
文摘High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.
文摘Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.