采用常规直流与柔性直流混合的特高压多端直流输电系统是昆柳龙直流工程技术方案之一,对采用全桥和半桥混合拓扑的特高压柔性直流输电换流器充电时的均压问题进行分析,提出了两种不同的充电策略。研究了混合三端直流系统的启停顺控流程...采用常规直流与柔性直流混合的特高压多端直流输电系统是昆柳龙直流工程技术方案之一,对采用全桥和半桥混合拓扑的特高压柔性直流输电换流器充电时的均压问题进行分析,提出了两种不同的充电策略。研究了混合三端直流系统的启停顺控流程和直流线路瞬时故障穿越、重启策略。在RT-LAB中搭建三端混合直流输电系统,连接外部阀控装置进行实时仿真实验,实验结果验证了提出的充电策略的正确性,表明所提出的直流线路故障穿越和重启策略可以很好地实现系统穿越故障,使系统重新进入稳态。此外,在±10.5 k V/60 MW柔性直流背靠背样机上进行了充电策略验证和直流双极短路故障穿越后重启策略验证,充分验证了采用全半桥混合拓扑柔直系统的故障穿越能力。展开更多
基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低...基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低、快速性差的问题,提出了一种基于变分模态分解法(variational mode decomposition,VMD)和Teager能量算子(Teager energy operator,TEO)的双端行波故障测距方法。首先,研究了LCC-UHVDC线路故障电压行波的传播特性。利用零模电压随线路传播衰减明显的特征,通过VMD算法提取采样点处零模电压行波的时频特性。针对VMD参数选择不当导致的模态混叠问题,利用K-L散度(Kullback-Leibler divergence)对提取的模态指标进行优化。然后采用TEO对分解后信号进行瞬时能量谱提取,精确标定波头到达时间,最后采用双端迭代测距法迭代求解故障距离。在PSCAD/EMTDC搭建±800 kV LCC-UHVDC仿真模型进行验证。结果表明,所提方法在不同故障位置、过渡电阻和故障类型下具有较强的鲁棒性。展开更多
为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测...为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测方法。首先,基于快速傅里叶变换分析特高压直流输电系统暂态故障特征,使用相模变换和小波变换提取出故障特征量作为输入数据。其次,将输入数据输入到LSTM-RNN中进行前向传播,对系统故障特征进行深度学习,同时使用反向传播方式更新网络参数,将深层的特征量输入到Softmax分类器中进行分类,把故障识别分成区外故障、母线故障和线路故障,故障分类为正极故障、负极故障和双极故障,并输出识别结果。最后,在PSCAD/EMTDC仿真条件下,搭建特高压直流输电模型。验证结果表明:所提的方法在特高压直流输电线路继电保护的故障检测、故障选极上具有更好的效果,相比于人工神经网络、卷积神经网络、支持向量机,故障识别准确率分别提升4.71%、6.57%、9.32%。展开更多
文摘采用常规直流与柔性直流混合的特高压多端直流输电系统是昆柳龙直流工程技术方案之一,对采用全桥和半桥混合拓扑的特高压柔性直流输电换流器充电时的均压问题进行分析,提出了两种不同的充电策略。研究了混合三端直流系统的启停顺控流程和直流线路瞬时故障穿越、重启策略。在RT-LAB中搭建三端混合直流输电系统,连接外部阀控装置进行实时仿真实验,实验结果验证了提出的充电策略的正确性,表明所提出的直流线路故障穿越和重启策略可以很好地实现系统穿越故障,使系统重新进入稳态。此外,在±10.5 k V/60 MW柔性直流背靠背样机上进行了充电策略验证和直流双极短路故障穿越后重启策略验证,充分验证了采用全半桥混合拓扑柔直系统的故障穿越能力。
文摘基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低、快速性差的问题,提出了一种基于变分模态分解法(variational mode decomposition,VMD)和Teager能量算子(Teager energy operator,TEO)的双端行波故障测距方法。首先,研究了LCC-UHVDC线路故障电压行波的传播特性。利用零模电压随线路传播衰减明显的特征,通过VMD算法提取采样点处零模电压行波的时频特性。针对VMD参数选择不当导致的模态混叠问题,利用K-L散度(Kullback-Leibler divergence)对提取的模态指标进行优化。然后采用TEO对分解后信号进行瞬时能量谱提取,精确标定波头到达时间,最后采用双端迭代测距法迭代求解故障距离。在PSCAD/EMTDC搭建±800 kV LCC-UHVDC仿真模型进行验证。结果表明,所提方法在不同故障位置、过渡电阻和故障类型下具有较强的鲁棒性。
文摘为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测方法。首先,基于快速傅里叶变换分析特高压直流输电系统暂态故障特征,使用相模变换和小波变换提取出故障特征量作为输入数据。其次,将输入数据输入到LSTM-RNN中进行前向传播,对系统故障特征进行深度学习,同时使用反向传播方式更新网络参数,将深层的特征量输入到Softmax分类器中进行分类,把故障识别分成区外故障、母线故障和线路故障,故障分类为正极故障、负极故障和双极故障,并输出识别结果。最后,在PSCAD/EMTDC仿真条件下,搭建特高压直流输电模型。验证结果表明:所提的方法在特高压直流输电线路继电保护的故障检测、故障选极上具有更好的效果,相比于人工神经网络、卷积神经网络、支持向量机,故障识别准确率分别提升4.71%、6.57%、9.32%。