采用多层快速多极子方法(Multilevel fast multipole algorithm,MLFMA)求解混合场积分方程(Combinedfield integral equation,CFIE),并选择RWG型基函数,对金属带缝锥球体、三面角反射器以及钻石体的单站RCS(Radar cross section)进行了...采用多层快速多极子方法(Multilevel fast multipole algorithm,MLFMA)求解混合场积分方程(Combinedfield integral equation,CFIE),并选择RWG型基函数,对金属带缝锥球体、三面角反射器以及钻石体的单站RCS(Radar cross section)进行了计算,计算结果与试验吻合良好。在此基础上计算了F-22缩比模型的单站RCS,其计算量、存储量分别达到O(NlogN)量级和O(N)量级,此方法适用于带有尖点和特别细长曲面的三维复杂目标,如战斗机外形的RCS计算分析。展开更多
为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(...为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(Combined Field Integral Equation,CFIE),利用了旋转对称体在空间上的旋转周期性,只需要对表面的母线进行剖分,具有未知量少且阻抗矩阵条件数好的特点.根据等效原理与边界条件推导了JMCFIE-CFIE方程,并与传统的PMCHW-CFIE方法对比了求解效率.数值算例表明该方法能明显改善方程的收敛性.展开更多
文摘采用多层快速多极子方法(Multilevel fast multipole algorithm,MLFMA)求解混合场积分方程(Combinedfield integral equation,CFIE),并选择RWG型基函数,对金属带缝锥球体、三面角反射器以及钻石体的单站RCS(Radar cross section)进行了计算,计算结果与试验吻合良好。在此基础上计算了F-22缩比模型的单站RCS,其计算量、存储量分别达到O(NlogN)量级和O(N)量级,此方法适用于带有尖点和特别细长曲面的三维复杂目标,如战斗机外形的RCS计算分析。
文摘为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(Combined Field Integral Equation,CFIE),利用了旋转对称体在空间上的旋转周期性,只需要对表面的母线进行剖分,具有未知量少且阻抗矩阵条件数好的特点.根据等效原理与边界条件推导了JMCFIE-CFIE方程,并与传统的PMCHW-CFIE方法对比了求解效率.数值算例表明该方法能明显改善方程的收敛性.