期刊文献+

基于时域混合场积分方程求解目标瞬态散射特性

The Solution of Time-Domain Combined Field Integral Equation for Transient Scattering by Conducting Surfaces of Arbitrary Shape
在线阅读 下载PDF
导出
摘要 当入射平面波的频谱包含目标的谐振频点时,时域电场积分方程和时域磁场积分方程求解的表面电流不稳定,会出现后期震荡现象。通过线性组合时域电场积分方程和时域磁场积分方程,可以获得一种混合场积分方程。数值结果显示,这种混合场积分方程消除了因内部谐振引起的后期震荡,得到了稳定的表面电流分布和远区散射场。 The time-domain EFIE and MFIE approaches produce late-time oscillation for transient scattering responses from conducting objects when the incident spectrum of the field contains frequency components, which may correspond to the internal resonance of the structure. A time-domain Combined Field Integral Equation (CFIE) is presented. This formulation is based on a linear combination of the time-domain EFIE with MFIE. Numerical results for the EFIE, MFIE, and CFIE axe presented and compared with those obtained from the Inverse Discrete Fourier Transform (IDFT) of the frequency-domain CFIE solution. And the time-domain CFIE solutions devoid of any resonant components.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第2期494-497,共4页 Journal of Electronics & Information Technology
关键词 时域混合场积分方程 瞬态特性 内部谐振 后期震荡 Time-Domain Combined Field Integral Equation(TD-CFIE) Transient response Internal resonance Late-time oscillation
作者简介 任猛:男,1978年生,博士生,从事计算电磁学、超宽带信号辐射散射理论与技术研究. 周东明:男,1976年生,博士生,从事计算电磁学、超宽带信号辐射散射理论与技术研究. 何建国:男,1954年生,教授,博士生导师,中国电子学会高级会员,出版专著5部,先后在国内外刊物发表论文50余篇,获各种科技进步奖10余项,研究领域超宽带技术和电磁兼容等.
  • 相关文献

参考文献13

  • 1Rao S M. Time Domain Electromagnetics, San Diego, Academic Press, 1999: 1-9.
  • 2Rao S M and Wilton D R. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. on Antennas and Propagation, 1991, 39(1): 56-61.
  • 3Rao S M and Sarkar T K. Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral equation technique. Microw. Opt. Technol. Lett., 1998, 17(1): 66-69.
  • 4Jung B H and Sarkar T K. Transient scattering from three-dimensional conducting bodies byusing magnetic field integral equation. J. of Electromagn. Waves and Appl., 2002, 16(1): 111-128.
  • 5Vechinski D A and Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. on Antennas and Propagation, 1992, 40(6): 661-665.
  • 6Sadigh A and Arvas E. Treating instabilities in marching-on-in-time method from a different perspective. IEEE Trans. on Antennas and Propagation, 1993, 41(12): 1695-1702.
  • 7Rynne B P and Smith P D. Stability of time marching algorithoms for the electric field integral equations. J. Electromagn. Waves Appl., 1990, 12(4): 1181-1205.
  • 8Davies P J. A stability analysis of a time marching scheme for the general surface electric field integral equation. Appl. Numer. Math., 1998, 27(1): 35-57.
  • 9Manara G, Monorchio A, and Reggiannini R. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation. IEEE Trans. on Antennas and Propagation, 1997, 45(3): 527-532.
  • 10Shanker B, Erigin A A, Aygun K, and Michielssen E. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation. IEEE Trans. on Antennas and Propagation, 2000, 48(7): 1064-1074.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部