期刊文献+
共找到147篇文章
< 1 2 8 >
每页显示 20 50 100
深度卷积神经网络在迁移学习模式下的SAR目标识别 被引量:36
1
作者 李松 魏中浩 +1 位作者 张冰尘 洪文 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期75-83,共9页
合成孔径雷达(synthetic aperture radar,SAR)自动目标识别过程主要包括目标特征提取和分类器训练两个步骤。提出一种基于深度卷积神经网络(deep convolutional neural networks,DNNs)的SAR自动目标识别方法,使用一类优化的DNNs网络结构... 合成孔径雷达(synthetic aperture radar,SAR)自动目标识别过程主要包括目标特征提取和分类器训练两个步骤。提出一种基于深度卷积神经网络(deep convolutional neural networks,DNNs)的SAR自动目标识别方法,使用一类优化的DNNs网络结构对SAR图像目标进行分类训练。该网络结构自动提取目标类别特征,避免人工预选取特征方法带来的不标准性。在DNNs网络模型训练过程中引入迁移学习的概念,以防止结果陷入局部最优解和加快模型参数的训练。最后使用美国运动和静止目标获取与识别MSTAR数据集进行试验,给出该方法与其他分类方法结果的对比,证明其取得较高的分类正确率。 展开更多
关键词 合成孔径雷达(SAR) 自动目标识别 深度卷积神经网络 迁移学习
在线阅读 下载PDF
基于迁移学习深度卷积神经网络的配电网故障区域定位 被引量:48
2
作者 孟子超 杜文娟 王海风 《南方电网技术》 CSCD 北大核心 2019年第7期25-33,共9页
数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CN... 数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CNN的特点,论述了二者应用于配电网故障区域定位问题的可行性与优势。然后,利用ResNet50网络搭建了基于迁移学习的CNN模型。IEEE33节点配电网模型验证表明,所提方法仅利用两个测点的电压电流信息,在小样本情况下能迅速完成对故障区域的准确定位,且不易受过渡电阻、故障类型、噪声等因素影响。 展开更多
关键词 深度学习 迁移学习 卷积神经网络 配电网 故障区域定位
在线阅读 下载PDF
基于卷积神经网络-深度迁移学习的岩性自动识别研究 被引量:14
3
作者 熊峰 廖一凡 +4 位作者 曹伟腾 张国华 师学明 李辉 郑洪 《安全与环境工程》 CAS CSCD 北大核心 2023年第4期26-34,共9页
基于人工智能算法实现岩性自动和快速识别是地质界和工程界的热点和难点,对于构建智能勘察体系具有重要意义。首先,基于地质学岩石分类体系建立系统的岩石图像数据集架构,用以支持后续岩石识别研究工作,该数据集包含约13000张岩石样本图... 基于人工智能算法实现岩性自动和快速识别是地质界和工程界的热点和难点,对于构建智能勘察体系具有重要意义。首先,基于地质学岩石分类体系建立系统的岩石图像数据集架构,用以支持后续岩石识别研究工作,该数据集包含约13000张岩石样本图像;其次,基于卷积神经网络-深度迁移学习算法,建立端到端、图像到标签的岩石图像智能识别模型,并对模型进行训练和测试;最后,模型泛化性和现场钻孔岩芯岩性验证试验表明,构建的岩石图像智能识别模型具有快速和准确识别岩石的能力,利用该模型对12种岩石的识别准确率达到95%以上。新提出的岩石图像识别模型可为现场地质和科研工作者提供方便和快捷的工具。 展开更多
关键词 人工智能 岩石分类 卷积神经网络 深度迁移学习 泛化性
在线阅读 下载PDF
基于深度卷积神经网络的滚动轴承迁移故障诊断 被引量:9
4
作者 李欢 吕勇 +1 位作者 袁锐 杨旭 《组合机床与自动化加工技术》 北大核心 2023年第2期90-94,共5页
针对滚动轴承故障诊断中故障样本不足、诊断精度与诊断效率不高的问题,提出一种基于深度卷积神经网络的滚动轴承迁移故障诊断方法。首先,通过VMD对原始振动信号进行分解,利用中心频率法确定分解个数k;其次,按照最大峭度准则筛选出最佳... 针对滚动轴承故障诊断中故障样本不足、诊断精度与诊断效率不高的问题,提出一种基于深度卷积神经网络的滚动轴承迁移故障诊断方法。首先,通过VMD对原始振动信号进行分解,利用中心频率法确定分解个数k;其次,按照最大峭度准则筛选出最佳固有模态函数(intrinsic mode function, IMF),并对其进行连续小波变换(continuous wavelet transform, CWT)生成时频图;最后,将预处理过的时频图输入到在ImageNet数据集预训练过的深度残差网络(residual network, ResNet)模型中微调,实现故障分类识别。在某大学公开轴承数据集和题课组数据集上验证,测试精度分别达到99.60%和100%,可有效实现滚动轴承故障诊断。 展开更多
关键词 滚动轴承 深度卷积神经网络 变分模式分解 深度迁移学习 故障诊断
在线阅读 下载PDF
基于深度卷积神经网络和迁移学习的纹理图像识别 被引量:28
5
作者 王军敏 樊养余 李祖贺 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第5期701-710,共10页
针对传统的纹理图像识别方法设计过程复杂,而现有的基于深度学习的方法未能有效解决纹理图像样本数量偏少而导致识别精度不佳的问题,提出一种基于深度卷积神经网络和迁移学习的纹理图像识别方法.首先利用在大规模ImageNet图像数据集上... 针对传统的纹理图像识别方法设计过程复杂,而现有的基于深度学习的方法未能有效解决纹理图像样本数量偏少而导致识别精度不佳的问题,提出一种基于深度卷积神经网络和迁移学习的纹理图像识别方法.首先利用在大规模ImageNet图像数据集上预先训练的深度学习模型构造新的迁移学习模型;然后设置合理的模型超参数,并将训练损失、验证损失以及训练集和验证集深度特征距离的加权和作为训练的代价函数;最后通过逐层训练和验证确定最佳的迁移学习模型.实验结果表明,所提方法在CUReT,KTH-TIPS,UIUC,UMD和NewBarkTex纹理数据库上分别取得了99.76%,99.87%,99.80%,100.00%和94.01%的识别精度,具有良好的稳健性和识别能力. 展开更多
关键词 纹理图像识别 深度卷积神经网络 迁移学习 特征提取
在线阅读 下载PDF
深度卷积神经网络下的图像风格迁移算法 被引量:16
6
作者 李慧 万晓霞 《计算机工程与应用》 CSCD 北大核心 2020年第2期176-183,共8页
针对图像风格迁移中出现的图像扭曲、内容细节丢失的问题,提出一种基于深度卷积神经网络的带有语义分割的图像风格迁移算法。定义内容图像损失和风格图像损失函数;对内容图像与风格图像分别进行语义分割,并将Matting算法作用在内容图像... 针对图像风格迁移中出现的图像扭曲、内容细节丢失的问题,提出一种基于深度卷积神经网络的带有语义分割的图像风格迁移算法。定义内容图像损失和风格图像损失函数;对内容图像与风格图像分别进行语义分割,并将Matting算法作用在内容图像上,使用最小二乘惩罚函数来增强图片边缘真实性;进行图像的内容重建和风格重建生成新的图像。分析比较Neural Style改进方法、CNNMRF方法和带有语义分割的图像风格迁移方法生成的图像。实验结果和质量评估表明,70%带有语义分割的图像风格迁移方法生成的图像没有明显的图像扭曲,且内容细节完好。所以,该方法可以解决图像扭曲和细节丢失的问题,使内容丰富的图像可以得到精确的风格迁移。 展开更多
关键词 深度卷积神经网络 图像风格迁移 语义分割 Matting算法
在线阅读 下载PDF
基于神经网络的图像风格迁移研究进展 被引量:4
7
作者 廉露 田启川 +1 位作者 谭润 张晓行 《计算机工程与应用》 CSCD 北大核心 2024年第9期30-47,共18页
图像风格迁移是用风格图像对指定图像的内容进行重映射的过程,是人工智能计算机视觉领域中的一个研究热点。传统的图像风格迁移方法主要基于物理、纹理技术的合成,风格迁移效果较为粗糙并且鲁棒性较差,随着图像数据集的出现和各种深度... 图像风格迁移是用风格图像对指定图像的内容进行重映射的过程,是人工智能计算机视觉领域中的一个研究热点。传统的图像风格迁移方法主要基于物理、纹理技术的合成,风格迁移效果较为粗糙并且鲁棒性较差,随着图像数据集的出现和各种深度学习模型网络的提出,涌现了许多图像风格迁移的模型和算法。通过对图像风格迁移研究现状的分析,梳理了图像风格迁移的发展脉络和最新的研究进展,并通过对比分析给出了图像风格迁移未来的研究方向。 展开更多
关键词 图像风格迁移 深度学习 卷积神经网络 注意力机制
在线阅读 下载PDF
基于拉东投影与改进卷积神经网络的小样本水下目标声呐图像识别方法 被引量:3
8
作者 周光波 张培珍 +1 位作者 莫晴舒 尹晓锋 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2048-2056,共9页
针对水下声呐图像质量差、样本数量少导致目标识别精确度低的问题,本文提出一种水下目标识别方法。利用增量的全向Radon投影特征图作为输入数据,结合改进结构的卷积神经网络,实现小样本声呐图像识别。实验以5种不同目标声呐图像的Radon... 针对水下声呐图像质量差、样本数量少导致目标识别精确度低的问题,本文提出一种水下目标识别方法。利用增量的全向Radon投影特征图作为输入数据,结合改进结构的卷积神经网络,实现小样本声呐图像识别。实验以5种不同目标声呐图像的Radon特征图作为输入,分别采用迁移学习得到的ResNet-18、GoogLeNet模型以及改进模型进行实验,验证改进模型的结构合理性;将原始图像结合改进模型进行识别,验证Radon特征图作为数据源的优势。原图结合改进模型、Radon特征图结合ResNet-18、GoogLeNet模型及改进模型的最优训练样本数分别为960、1440、5760和1200;训练用时依次为328、699、8678和447 s;相应最佳识别准确率分别为97.8%、94.4%、93.9%和99.9%。通过混淆矩阵给出不同方法预报错误的类别及数量,进一步解释出现误判的原因。结果表明:本文所提出的方案能够在较少的样本数和较低的运算成本条件下获取较高的精度。研究成果能够作为目标声呐图像识别分类的有效方法,并可望推广至更多水下目标分类。 展开更多
关键词 水下目标识别 声呐图像 数据增量 RADON变换 卷积神经网络 迁移学习 深度学习 特征融合
在线阅读 下载PDF
基于迁移学习的卷积神经网络玉米病害图像识别 被引量:137
9
作者 许景辉 邵明烨 +1 位作者 王一琛 韩文霆 《农业机械学报》 EI CAS CSCD 北大核心 2020年第2期230-236,253,共8页
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中... 为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95.33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。 展开更多
关键词 玉米病害 迁移学习 深度学习 图像识别 卷积神经网络
在线阅读 下载PDF
基于深度卷积神经网络的宫颈细胞病理智能辅助诊断方法 被引量:5
10
作者 廖欣 郑欣 +3 位作者 邹娟 冯敏 孙亮 杨开选 《液晶与显示》 CAS CSCD 北大核心 2018年第6期528-537,共10页
针对宫颈细胞病理自动筛查问题,提出一种基于深度卷积神经网络的智能辅助诊断方法。首先采用基于改进UNet深度卷积神经网络模型的语义分割方法,检测出宫颈细胞病理涂片扫描图像中的细胞(粘连簇团)区域。接着,利用VGG 16深度卷积神经网... 针对宫颈细胞病理自动筛查问题,提出一种基于深度卷积神经网络的智能辅助诊断方法。首先采用基于改进UNet深度卷积神经网络模型的语义分割方法,检测出宫颈细胞病理涂片扫描图像中的细胞(粘连簇团)区域。接着,利用VGG 16深度卷积神经网络模型,结合迁移学习技术,对检测出的细胞(粘连簇团)区域进行精确识别。为了提高深度卷积神经网络模型的性能,在进行细胞(粘连簇团)区域检测、识别的过程中,采用了数据增强技术。同时,针对该领域相关研究缺乏宫颈细胞病理液基涂片扫描图像数据集的问题,我们收集四川大学华西附二院的典型LCT筛查病例,建立了宫颈细胞病理图像HXLCT数据集,并由资深病理医生完成数据标注。实验表明,本文方法能够较好地完成宫颈细胞病理涂片扫描图像中的细胞(粘连簇团)区域检测(正确率为91.33%),并能对检测出的区域完成正常、疑似病变二分类识别(正确率为91.6%,召回率为92.3%,ROC曲线线下面积为0.914)。本文工作将有助于宫颈细胞病理自动筛查系统的开发,对于宫颈癌早期防治具有重要意义。 展开更多
关键词 宫颈 细胞病理 深度卷积神经网络 数据增强 迁移学习 智能辅助筛查
在线阅读 下载PDF
基于卷积神经网络的图像局部风格迁移 被引量:11
11
作者 缪永伟 李高怡 +2 位作者 鲍陈 张旭东 彭思龙 《计算机科学》 CSCD 北大核心 2019年第9期259-264,共6页
图像风格迁移是计算机图形学和计算机视觉的一个研究热点。针对现有的图像风格迁移方法中难以对内容图局部区域进行风格迁移的难点,提出了一种基于卷积神经网络的图像局部风格迁移框架。首先,根据输入的内容图和风格图,利用图像风格迁... 图像风格迁移是计算机图形学和计算机视觉的一个研究热点。针对现有的图像风格迁移方法中难以对内容图局部区域进行风格迁移的难点,提出了一种基于卷积神经网络的图像局部风格迁移框架。首先,根据输入的内容图和风格图,利用图像风格迁移网络生成全局风格迁移图;然后,利用图像语义分割网络,通过自动语义分割生成的掩码确定图像前景区域与背景区域;最后,利用掩码图确定风格迁移区域并融合未迁移区域得到图像局部风格迁移结果,同时提出一种基于曼哈顿距离的图像融合算法以优化局部风格迁移对象与未迁移区域之间边界的衔接和平滑过渡。该框架综合考虑了目标区域和边界带的像素值、位置等细节信息,在3个公开的图像数据集上进行实验,结果表明该方法能够高效、快速并自然地实现输入内容图的局部风格迁移,生成艺术性与真实性和谐并存的视觉效果。 展开更多
关键词 图像局部风格迁移 深度学习 卷积神经网络 曼哈顿距离 自动语义分割
在线阅读 下载PDF
基于迁移学习的卷积神经网络SAR图像目标识别 被引量:17
12
作者 陈立福 武鸿 +2 位作者 崔先亮 郭正华 贾智伟 《中国空间科学技术》 EI CSCD 北大核心 2018年第6期45-51,共7页
针对卷积神经网络中因网络参数随机初始化和参数过多导致的收敛速度慢及过拟合的问题,提出了一种基于迁移学习监督式预训练的卷积神经网络。首先,引入迁移学习的思想,采用小规模数据集作为源域的训练样本,针对源域中源任务进行监督式训... 针对卷积神经网络中因网络参数随机初始化和参数过多导致的收敛速度慢及过拟合的问题,提出了一种基于迁移学习监督式预训练的卷积神经网络。首先,引入迁移学习的思想,采用小规模数据集作为源域的训练样本,针对源域中源任务进行监督式训练得到预训练模型;然后,构建一个多层的卷积神经网络作为目标域中目标任务的待训练网络,将源域中获得的预训练模型作为该网络的初始参数,大规模数据作为目标域的训练样本进行网络的微调,通过这种基于特征选择的迁移学习,实现源域到目标域的特征信息迁移;针对卷积神经网络中全连接层参数过多的问题,采用卷积层替代全连接层。试验使用美国国防高等研究计划署的移动与静止目标搜索识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集中三类目标数据作为源域样本,十类目标数据作为目标域样本,结果表明该算法的十类目标识别精度达到了99.13%,且具有更快的误差收敛速度。 展开更多
关键词 迁移学习 卷积神经网络 深度学习 合成孔径雷达 预训练模型
在线阅读 下载PDF
结合卷积神经网络和迁移学习的电机轴承故障诊断方法 被引量:18
13
作者 李俊卿 刘静 《华北电力大学学报(自然科学版)》 CAS 北大核心 2023年第1期76-83,91,共9页
针对轴承故障在变工况下有效数据样本不足时故障诊断效果不佳的问题,提出了一种基于卷积神经网络和迁移学习的电机轴承故障诊断方法。首先,将采集到的原始振动信号进行小波变换,得到有利于卷积神经网络训练的彩色二维时频图;其次,构建... 针对轴承故障在变工况下有效数据样本不足时故障诊断效果不佳的问题,提出了一种基于卷积神经网络和迁移学习的电机轴承故障诊断方法。首先,将采集到的原始振动信号进行小波变换,得到有利于卷积神经网络训练的彩色二维时频图;其次,构建卷积神经网络,通过训练确定结构和参数,利用数据增强和Dropout机制抑制过拟合;最后,引进迁移学习,冻结训练好后的网络底层结构,用不同工况的小样本数据对网络的顶层结构进行微调。实例分析证明,小波变换和卷积神经网络结合的方式能实现特征自动提取并高度有效地利用样本,迁移学习的引入能实现其他工况下小样本的准确分类,解决实际工程应用中样本不足时故障诊断效果不佳的问题。 展开更多
关键词 故障诊断 深度学习 电机轴承 卷积神经网络 迁移学习
在线阅读 下载PDF
基于ACON激活函数和卷积神经网络的滚动轴承故障诊断
14
作者 常志远 刘昌奎 +1 位作者 李志农 周世健 《轴承》 北大核心 2024年第8期53-58,67,共7页
针对滚动轴承故障诊断任务的泛化问题,提出一种基于ACON激活函数和卷积神经网络(CNN)的故障诊断方法(ACON-CNN模型)。构造一种自适应激活因子,利用ACON激活函数的自适应激活特性增强整个卷积神经网络的自适应特征能力;同时构造一种基于... 针对滚动轴承故障诊断任务的泛化问题,提出一种基于ACON激活函数和卷积神经网络(CNN)的故障诊断方法(ACON-CNN模型)。构造一种自适应激活因子,利用ACON激活函数的自适应激活特性增强整个卷积神经网络的自适应特征能力;同时构造一种基于稀疏结构的神经元簇,增加诊断模型的稳定性。对CWRU轴承数据集以及航空轴承数据集的试验结果表明:针对同一轴承不同采集端故障数据的训练与识别中,ACON-CNN模型具有比原始CNN,FFT-CNN,LSTM-CNN更好的识别效率和鲁棒性;在不同轴承样本数据集的迁移学习中,ACON激活函数和稀疏神经元簇的综合作用也使ACON-CNN模型获得了更好的泛化性能和识别效果。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 激活函数 深度学习 迁移学习
在线阅读 下载PDF
面向人脸表情识别的迁移卷积神经网络研究 被引量:19
15
作者 翟懿奎 刘健 《信号处理》 CSCD 北大核心 2018年第6期729-738,共10页
人脸表情识别是模式识别研究的一个重要领域,现实环境中人脸表情识别容易受到光照、姿态、个体表情差异等因素的影响,识别效果仍有待提高。为了取得更好的人脸表情识别效果,本文提出一种基于迁移卷积神经网络的人脸表情识别方法,本文在... 人脸表情识别是模式识别研究的一个重要领域,现实环境中人脸表情识别容易受到光照、姿态、个体表情差异等因素的影响,识别效果仍有待提高。为了取得更好的人脸表情识别效果,本文提出一种基于迁移卷积神经网络的人脸表情识别方法,本文在训练得到人脸识别网络模型的基础上,采用迁移学习方法将所得人脸识别模型迁移到人脸表情识别任务上,并提出Softmax-MSE损失函数和双激活层(Double Activate Layer,DAL)结构,以提高模型的识别能力。在FER2013数据库和SFEW2.0数据库上的实验表明,本文所提方法分别取得了61.59%和47.23%的主流识别效果。 展开更多
关键词 表情识别 深度卷积神经网络 迁移学习
在线阅读 下载PDF
基于迁移学习与卷积神经网络的玉米植株病害识别 被引量:26
16
作者 陈桂芬 赵姗 +2 位作者 曹丽英 傅思维 周佳鑫 《智慧农业》 2019年第2期34-44,共11页
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强... 大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。 展开更多
关键词 深度学习 卷积神经网络 迁移学习 数据增强 玉米病害识别
在线阅读 下载PDF
基于深度卷积神经网络的Barrett食管内镜图片分类模型的建立 被引量:2
17
作者 林嘉希 汪盛嘉 +3 位作者 赵鑫 高欣 殷民月 朱锦舟 《上海交通大学学报(医学版)》 CAS CSCD 北大核心 2022年第5期653-659,共7页
目的·利用深度卷积神经网络算法,构建Barrett食管内镜图片分类模型并评估其分类能力。方法·收集苏州大学附属第一医院消化内镜中心及HyperKvasir数据库中的内镜下食管图片共806张,其中正常食管图片412张、Barrett食管图片394... 目的·利用深度卷积神经网络算法,构建Barrett食管内镜图片分类模型并评估其分类能力。方法·收集苏州大学附属第一医院消化内镜中心及HyperKvasir数据库中的内镜下食管图片共806张,其中正常食管图片412张、Barrett食管图片394张。随机将所有图片分为训练集(85%)与验证集(15%)。利用于ImageNet数据库进行预训练的4种深度卷积神经网络[Xception、NASNet Large(NASNetL)、ResNet50V2(ResNet)及BigTransfer(BiT)],分别在训练集中进行迁移学习,建立Barrett食管内镜图片分类模型,并使用梯度加权分类激活映射对该4个模型的分类结果进行可视化解释。随后,于验证集中评价模型的分类能力。同时,收集高、低年资医师对验证集数据的分类结果,将其与模型的分类结果进行对比,进一步评估模型的分类能力。结果·成功构建了基于深度卷积神经网络的Barrett食管内镜图片的4个分类模型。利用梯度加权分类激活映射,以热力图形式实现了对模型分类结果的可视化解释。在验证集数据中,各模型均拥有较高的分类准确性与精确性,其平均分类准确性为0.852,平均分类精确性为0.846。NASNetL模型相较其余3种模型,拥有最高分类准确性(0.873)及最高分类精确性(0.867),是表现最优的模型。该模型对Barrett食管内镜图片的分类能力近似高年资医师,其分类准确性略低于高年资医师(0.881)而高于低年资医师(0.855);同时,该模型与高年资医师(Kappa=0.712,P=0.000)、低年资医师(Kappa=0.695,P=0.000)均具有较好的分类一致性。结论·利用深度卷积神经网络迁移学习构建的Barrett食管内镜图片分类模型具有较好的分类能力。 展开更多
关键词 BARRETT食管 深度学习 迁移学习 消化内镜 卷积神经网络
在线阅读 下载PDF
基于两层迁移卷积神经网络的抽象图像情感识别 被引量:7
18
作者 杨子文 陈蕾 浦建宇 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第1期40-48,共9页
为弥合抽象图像底层视觉特征与高层情感语义间的鸿沟,同时缓解抽象图像情感识别所固有的小样本缺陷,将两层迁移学习策略引入传统的卷积神经网络,提出一种基于两层迁移卷积神经网络的抽象图像情感识别模型.该模型利用深度特征的层次性,... 为弥合抽象图像底层视觉特征与高层情感语义间的鸿沟,同时缓解抽象图像情感识别所固有的小样本缺陷,将两层迁移学习策略引入传统的卷积神经网络,提出一种基于两层迁移卷积神经网络的抽象图像情感识别模型.该模型利用深度特征的层次性,首先通过大规模通用图像数据集来学习提取普适的底层图像特征;然后利用抽象图像风格分类数据集来学习提取抽象图像的专有高层语义特征;最后采用抽象图像情感识别数据集来微调整个网络.MART数据集上的实验结果表明,与传统的抽象图像情感识别方法相比,所提出的模型能够有效地提高识别精度. 展开更多
关键词 情感识别 深度学习 迁移学习 卷积神经网络 抽象图像
在线阅读 下载PDF
基于迁移学习的并行卷积神经网络牦牛脸识别算法 被引量:7
19
作者 陈争涛 黄灿 +2 位作者 杨波 赵立 廖勇 《计算机应用》 CSCD 北大核心 2021年第5期1332-1336,共5页
为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方... 为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方法并结合视觉几何组网络(VGG)和卷积神经网络(CNN),提出了一种并行CNN(Parallel-CNN)算法用来识别牦牛的面部信息。首先,利用已有的VGG16网络对牦牛脸图像数据进行迁移学习以及初次提取牦牛的面部信息特征;然后,将提取到的不同层次的特征进行维度变换并输入到Parallel-CNN中进行二次特征提取;最后,利用两个分离的全连接层对牦牛脸图像进行分类。实验结果表明:Parallel-CNN能够对不同角度、光照和姿态的牦牛脸进行识别,在含有300头牦牛的90 000张牦牛脸图像的测试数据集上,所提算法的识别准确率达到91.2%。所提算法可以对牦牛身份进行精确识别,从而帮助牦牛养殖场实现对牦牛的智能化管理。 展开更多
关键词 牦牛脸识别 深度学习 迁移学习 卷积神经网络 并行网络
在线阅读 下载PDF
基于深度卷积神经网络的云分类算法 被引量:4
20
作者 张飞 闫杰 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第4期740-746,共7页
与卫星遥感图像相比,地面可见光图像虽然覆盖范围有限,但是分辨率更高、云型特征更明显且获取成本大大降低,有利于对局部地区进行持续性气象观测。首次针对地面可见光图像,提出了一种基于深度学习技术的云型图像分类方法。由于数据量有... 与卫星遥感图像相比,地面可见光图像虽然覆盖范围有限,但是分辨率更高、云型特征更明显且获取成本大大降低,有利于对局部地区进行持续性气象观测。首次针对地面可见光图像,提出了一种基于深度学习技术的云型图像分类方法。由于数据量有限,传统分类器如支持向量机等无法有效提取不同云的独有特征,而直接训练深度卷积神经网络会导致过拟合。为防止网络过拟合,提出利用迁移学习方法,对预训练模型进行微调。在对6类云型图像进行分类的实验中,本文所提出的网络在测试集上可以获得高达85.19%的正确率。所提出的网络可以直接对数码相机照片进行分类,大大降低了系统成本。 展开更多
关键词 云分类 卷积神经网络 深度学习 迁移学习
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部