期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
MEC网络中基于深度确定策略梯度的能效优化
1
作者 陈卡 《火力与指挥控制》 CSCD 北大核心 2024年第7期44-49,共6页
移动边缘计算(mobile edge computing,MEC)技术能为用户提供数据处理服务,但MEC服务器的计算资源有限,用户合理地向MEC服务器迁移任务及MEC服务器基于任务要求给用户合理分配资源是提高用户端能效的关键因素。提出基于深度确定策略梯度... 移动边缘计算(mobile edge computing,MEC)技术能为用户提供数据处理服务,但MEC服务器的计算资源有限,用户合理地向MEC服务器迁移任务及MEC服务器基于任务要求给用户合理分配资源是提高用户端能效的关键因素。提出基于深度确定策略梯度的能效优化算法(deep deterministic policy gradient-based energy efficiency opti-mization,DDPG-EEO)。在满足时延要求的前提下,建立关于任务卸载率和资源分配策略的最大化能效的优化问题。再将优化问题描述成马尔可夫决策过程(Markov decision process,MDP),并利用深度确定策略梯度求解。仿真结果表明,DDPG-EEO算法降低了UTs端的能耗,并提高了任务完成率。 展开更多
关键词 移动边缘计算 任务卸载 资源分配 强化学习 深度确定策略梯度
在线阅读 下载PDF
CR-NOMA中基于深度确定策略梯度的能效优化策略
2
作者 张云 《电信科学》 北大核心 2024年第5期112-120,共9页
利用认知无线电非正交多址接入(cognitive radio non-orthogonal multiple access,CR-NOMA)技术可缓解频谱资源短缺问题,提升传感设备的吞吐量。传感设备的能效问题一直制约着传感设备的应用。为此,针对CR-NOMA中的传感设备,提出基于深... 利用认知无线电非正交多址接入(cognitive radio non-orthogonal multiple access,CR-NOMA)技术可缓解频谱资源短缺问题,提升传感设备的吞吐量。传感设备的能效问题一直制约着传感设备的应用。为此,针对CR-NOMA中的传感设备,提出基于深度确定策略梯度的能效优化(deep deterministic policy gradientbased energy efficiency optimization,DPEE)算法。DPEE算法通过联合优化传感设备的传输功率和时隙分裂系数,提升传感设备的能效。将能效优化问题建模成马尔可夫决策过程,再利用深度确定策略梯度法求解。最后,通过仿真分析了电路功耗、时隙时长和主设备数对传感能效的影响。仿真结果表明,能效随传感设备电路功耗的增加而下降。此外,相比于基准算法,提出的DPEE算法提升了能效。 展开更多
关键词 传感设备 能量采集 认知无线电非正交多址接入 能效 深度确定策略梯度
在线阅读 下载PDF
基于深度确定性策略梯度的星地融合网络可拆分任务卸载算法
3
作者 宋晓勤 吴志豪 +4 位作者 赖海光 雷磊 张莉涓 吕丹阳 郑成辉 《通信学报》 EI CSCD 北大核心 2024年第10期116-128,共13页
为解决低轨卫星网络中星地链路任务卸载时延长的问题,提出了一种基于深度确定性策略梯度(DDPG)的星地融合网络可拆分任务卸载算法。针对不同地区用户建立了星地融合网络的多接入边缘计算结构模型,通过应用多智能体DDPG算法,将系统总服... 为解决低轨卫星网络中星地链路任务卸载时延长的问题,提出了一种基于深度确定性策略梯度(DDPG)的星地融合网络可拆分任务卸载算法。针对不同地区用户建立了星地融合网络的多接入边缘计算结构模型,通过应用多智能体DDPG算法,将系统总服务时延最小化的目标转化为智能体奖励收益最大化。在满足子任务卸载约束、服务时延约束等任务卸载约束条件下,优化用户任务拆分比例。仿真结果表明,所提算法在用户服务时延和受益用户数量等方面优于基线算法。 展开更多
关键词 星地融合网络 深度确定策略梯度 资源分配 多接入边缘计算
在线阅读 下载PDF
基于LSTM车速预测和深度确定性策略梯度的增程式电动汽车能量管理 被引量:1
4
作者 路来伟 赵红 +1 位作者 徐福良 罗勇 《汽车技术》 CSCD 北大核心 2024年第8期27-37,共11页
为提高增程式电动汽车的能量管理性能,首先利用长短时记忆(LSTM)神经网络进行车速预测,然后计算出预测时域内的需求功率,并将其与当前时刻的需求功率共同输入深度确定性策略梯度(DDPG)智能体,由智能体输出控制量,最后通过硬件在环仿真... 为提高增程式电动汽车的能量管理性能,首先利用长短时记忆(LSTM)神经网络进行车速预测,然后计算出预测时域内的需求功率,并将其与当前时刻的需求功率共同输入深度确定性策略梯度(DDPG)智能体,由智能体输出控制量,最后通过硬件在环仿真验证了控制策略的实时性。结果表明,采用所提出的LSTM-DDPG能量管理策略相对于DDPG能量管理策略、深度Q网络(DQN)能量管理策略、功率跟随控制策略在世界重型商用车辆瞬态循环(WTVC)工况下的等效燃油消耗量分别减少0.613 kg、0.350 kg、0.607 kg,与采用动态规划控制策略时的等效燃油消耗量仅相差0.128 kg。 展开更多
关键词 增程式电动汽车 长短时记忆神经网络 深度强化学习 深度确定策略梯度
在线阅读 下载PDF
深度确定性策略梯度下运动目标识别及无人机跟随
5
作者 刘欣 张倩飞 +1 位作者 刘成宇 高涵 《西安工程大学学报》 CAS 2024年第4期9-17,共9页
针对无人机(unmanned aerial vehicle,UAV)平台采集运动目标图像信息过程中因UAV自身的飞行状态、环境的干扰、目标的随机性等原因易产生运动目标丢失等问题,提出了一种基于运动目标识别的深度确定性策略梯度(deep deterministic policy... 针对无人机(unmanned aerial vehicle,UAV)平台采集运动目标图像信息过程中因UAV自身的飞行状态、环境的干扰、目标的随机性等原因易产生运动目标丢失等问题,提出了一种基于运动目标识别的深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法UAV跟随方法。面向高速公路的车辆目标,分析了UAV高度、位姿与高速车辆运动之间的关系,建立了移动平台目标检测帧率的速度自适应模型,根据目标的运动状态计算能够相匹配UAV的飞行状态,实时修正飞行姿态与速度,使UAV能够保持与目标的相对位置和角度。继而基于DDPG算法价值网络估计UAV在不同状态下采取特定动作的价值,策略网络生成UAV在给定状态下采取动作的策略,给予UAV飞行高度、速度控制参数用于目标跟踪,使UAV能够根据目标的运动变化自动调节飞行状态,实现运动目标的自适应跟随。仿真实验表明:DDPG算法能够提供稳定的飞行姿态数据,为UAV的跟随任务提供了可靠的控制基础;通过在真实场景下实验验证,UAV能够实时跟踪速度范围0~33 m/s、半径为120 m的圆形面积内的地面运动目标,且在续航范围内能够实现持续稳定跟随。 展开更多
关键词 四轴飞行器 高速公路 动态规划 深度确定策略梯度 目标跟踪
在线阅读 下载PDF
基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究
6
作者 赵洪山 潘思潮 +2 位作者 吴雨晨 马利波 吕廷彦 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期92-101,共10页
针对燃料电池热管理系统中水泵和散热器的控制问题,提出一种基于深度确定性策略梯度(DDPG)的联合控制策略。该策略取代了传统控制框架中水泵和散热器的独立控制器,采用多输入多输出且可同时控制水泵冷却水流速和散热器空气流速的智能体... 针对燃料电池热管理系统中水泵和散热器的控制问题,提出一种基于深度确定性策略梯度(DDPG)的联合控制策略。该策略取代了传统控制框架中水泵和散热器的独立控制器,采用多输入多输出且可同时控制水泵冷却水流速和散热器空气流速的智能体。首先确定智能体的状态空间和动作空间,然后由控制目标设定奖励函数,最后在仿真平台上验证该算法的有效性。结果表明,所提出的联合控制策略可有效地同时控制冷却水流速和空气流速,从而提高质子交换膜燃料电池(PEMFC)的运行效率。 展开更多
关键词 深度学习 强化学习 质子交换膜燃料电池 智能控制 深度确定策略梯度
在线阅读 下载PDF
基于深度确定性策略梯度的粒子群算法 被引量:5
7
作者 鲁华祥 尹世远 +2 位作者 龚国良 刘毅 陈刚 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第2期199-206,共8页
在传统的粒子群优化算法(PSO)中,所有粒子都遵循最初设定的一些参数进行自我探索,这种方案容易导致过早成熟,且易被困于局部最优点。针对以上问题,该文提出了一种基于深度确定性策略梯度的粒子群优化算法(DDPGPSO),通过构造神经网络分... 在传统的粒子群优化算法(PSO)中,所有粒子都遵循最初设定的一些参数进行自我探索,这种方案容易导致过早成熟,且易被困于局部最优点。针对以上问题,该文提出了一种基于深度确定性策略梯度的粒子群优化算法(DDPGPSO),通过构造神经网络分别实现了动作函数和动作价值函数,且利用神经网络可以动态地生成算法运行所需要的参数,降低了人工配置算法的难度。实验表明DDPGPSO相比9种同类算法在收敛速度和寻优精度上均有较大的提升。 展开更多
关键词 自适应惯性权值 收敛因子 深度确定策略梯度算法 强化学习 群体智能 粒子群优化算法
在线阅读 下载PDF
基于改进双延迟深度确定性策略梯度法的无人机反追击机动决策 被引量:8
8
作者 郭万春 解武杰 +1 位作者 尹晖 董文瀚 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2021年第4期15-21,共7页
针对近距空战下的自主机动反追击问题,建立了无人机反追击马尔科夫(Markov)决策过程模型;在此基础上,提出了一种采用深度强化学习的无人机反追击自主机动决策方法。新方法基于经验回放区重构,改进了双延迟深度确定性策略梯度(TD3)算法,... 针对近距空战下的自主机动反追击问题,建立了无人机反追击马尔科夫(Markov)决策过程模型;在此基础上,提出了一种采用深度强化学习的无人机反追击自主机动决策方法。新方法基于经验回放区重构,改进了双延迟深度确定性策略梯度(TD3)算法,通过拟合策略函数与状态动作值函数,生成最优策略网络。仿真实验表明,在随机初始位置/姿态条件下,与采用纯追踪法的无人机对抗,该方法训练的智能无人机胜率超过93%;与传统的TD3、深度确定性策略梯度(DDPG)算法相比,该方法收敛性更快、稳定性更高。 展开更多
关键词 深度强化学习 近距空战 无人机 双延迟深度确定策略梯度
在线阅读 下载PDF
基于深度确定性策略梯度的随机路由防御方法 被引量:5
9
作者 徐潇雨 胡浩 +1 位作者 张红旗 刘玉岭 《通信学报》 EI CSCD 北大核心 2021年第6期41-51,共11页
针对现有随机路由防御方法对数据流拆分粒度过粗、对合法的服务质量(QoS)保障效果不佳、对抗窃听攻击的安全性有待提升等问题,提出一种基于深度确定性策略梯度(DDPG)的随机路由防御方法。通过带内网络遥测(INT)技术实时监测并获取网络状... 针对现有随机路由防御方法对数据流拆分粒度过粗、对合法的服务质量(QoS)保障效果不佳、对抗窃听攻击的安全性有待提升等问题,提出一种基于深度确定性策略梯度(DDPG)的随机路由防御方法。通过带内网络遥测(INT)技术实时监测并获取网络状态;通过DDPG方法生成兼顾安全性和QoS需求的随机路由方案;通过P4框架下的可编程交换机执行随机路由方案,实现了数据包级粒度的随机路由防御。实验表明,与其他典型的随机路由方法相比,所提方法在对抗窃听攻击中的安全性和对网络整体QoS的保障效果均有提升。 展开更多
关键词 随机路由 深度确定策略梯度 窃听攻击 移动目标防御
在线阅读 下载PDF
基于深度确定性策略梯度算法的战机规避中距空空导弹研究 被引量:3
10
作者 宋宏川 詹浩 +2 位作者 夏露 李向阳 刘艳 《航空工程进展》 CSCD 2021年第3期85-94,共10页
飞机规避中距空空导弹的逃逸机动策略对于提高战斗机的生存力至关重要。针对深度确定性策略梯度算法训练智能体学习飞机规避导弹的逃逸机动策略进行研究。以飞机导弹相对态势参数等作为智能体的输入状态,飞机控制指令作为智能体的输出动... 飞机规避中距空空导弹的逃逸机动策略对于提高战斗机的生存力至关重要。针对深度确定性策略梯度算法训练智能体学习飞机规避导弹的逃逸机动策略进行研究。以飞机导弹相对态势参数等作为智能体的输入状态,飞机控制指令作为智能体的输出动作,导弹飞机追逃模型作为智能体的学习环境,设计由相对态势和飞行参数构成的成型奖励以及由交战结果组成的稀疏奖励,实现从状态参数到控制量端到端的逃逸机动策略。通过与四种基于专家先验知识的典型逃逸机动攻击区仿真验证对比,结果表明:智能体实现的逃逸策略攻击区仅次于置尾下降攻击区,该策略对飞机规避导弹先验知识的依存度最低。 展开更多
关键词 导弹规避 逃逸机动策略 深度确定策略梯度 深度强化学习
在线阅读 下载PDF
基于深度确定性策略梯度学习的无线反向散射数据卸载优化 被引量:1
11
作者 耿天立 高昂 +2 位作者 王琦 段渭军 胡延苏 《兵工学报》 EI CAS CSCD 北大核心 2021年第12期2655-2663,共9页
无线驱动通信网络中,无线设备(WD)可以通过无线反向散射和主动射频传输两种方式进行数据卸载。如何合理分配系统中WD的主动传输和反向散射传输工作模式及其对应的工作时间,从而减小传输延迟、提高传输效率就显得尤为必要。在综合考虑卸... 无线驱动通信网络中,无线设备(WD)可以通过无线反向散射和主动射频传输两种方式进行数据卸载。如何合理分配系统中WD的主动传输和反向散射传输工作模式及其对应的工作时间,从而减小传输延迟、提高传输效率就显得尤为必要。在综合考虑卸载数据量大小、信道条件和WD之间公平性情况下,提出一种基于深度确定性策略梯度(DDPG)的数据卸载方法,在连续动作空间内搜索多个WD的最优时间分配。仿真实验结果表明:DDPG可在有限时间步长内实现算法收敛;由于引入了Jain公平指数,多个WD可同时完成数据卸载;与传统的均分算法、贪心算法对比,DDPG算法可将平均传输延迟减小77.4%和24.2%,可有效提高WD的能耗效率,尤其对于卸载数据量较小的WD效果更加显著。 展开更多
关键词 反向散射 数据卸载 深度确定策略梯度 强化学习
在线阅读 下载PDF
深度确定性策略梯度和预测相结合的无人机空战决策研究 被引量:3
12
作者 李永丰 吕永玺 +1 位作者 史静平 李卫华 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第1期56-64,共9页
针对无人机自主空战机动决策过程中遇到的敌方不确定性操纵问题,提出了一种目标机动指令预测和深度确定性策略梯度算法相结合的无人机空战自主机动决策方法。对空战双方的态势数据进行有效的融合和处理,搭建无人机六自由度模型和机动动... 针对无人机自主空战机动决策过程中遇到的敌方不确定性操纵问题,提出了一种目标机动指令预测和深度确定性策略梯度算法相结合的无人机空战自主机动决策方法。对空战双方的态势数据进行有效的融合和处理,搭建无人机六自由度模型和机动动作库,在空战中目标通过深度Q网络算法生成相应机动动作库指令,同时我方无人机通过概率神经网络给出目标机动的预测结果。提出了一种同时考虑了两机态势信息和敌机预测结果的深度确定性策略梯度强化学习方法,使得无人机能够根据当前空战态势选择合适的机动决策。仿真结果表明,该算法可以有效利用空战态势信息和目标机动预测信息,在保证收敛性的前提下提高无人机自主空战决策强化学习算法的有效性。 展开更多
关键词 无人机 空战机动决策 预测 深度确定策略梯度
在线阅读 下载PDF
改进深度确定性策略梯度的决策算法研究 被引量:1
13
作者 陈建文 张小俊 张明路 《汽车实用技术》 2022年第1期28-31,共4页
为解决无人驾驶路径规划过程中的决策控制问题,文章针对深度确定性策略梯度算法在未知环境中随着搜索空间的增大,出现训练效率低、收敛不稳定等缺点,提出了基于奖励指导的改进算法。首先在每回合内采用基于奖励的优先级经验回放,减少深... 为解决无人驾驶路径规划过程中的决策控制问题,文章针对深度确定性策略梯度算法在未知环境中随着搜索空间的增大,出现训练效率低、收敛不稳定等缺点,提出了基于奖励指导的改进算法。首先在每回合内采用基于奖励的优先级经验回放,减少深度确定性策略梯度算法随机探索的盲目性,提高智能车学习效率。然后在回合间基于奖励筛选优秀轨迹,便于指导智能车对复杂空间的探索,得到稳定的控制策略。最后,在开源智能驾驶仿真环境进行仿真。实验结果表明改进后的深度确定性策略梯度算法性能优于原来的算法,训练效率和收敛稳定性均得到有效提升。 展开更多
关键词 路径规划 决策控制 深度确定策略梯度 奖励指导 优先经验回放
在线阅读 下载PDF
基于深度确定性策略梯度算法的智能水下机器人局部路径规划
14
作者 吕茜 党康宁 《科学技术创新》 2023年第20期224-228,共5页
路径规划是智能水下机器人技术研究的核心内容之一,是实现其自主航行和作业的关键环节。基于水下机器人的运动学模型,将深度确定性策略梯度(DDPG)算法应用于水下机器人的局部路径规划中,通过构造适当的奖励信号和设置合理的训练评估条件... 路径规划是智能水下机器人技术研究的核心内容之一,是实现其自主航行和作业的关键环节。基于水下机器人的运动学模型,将深度确定性策略梯度(DDPG)算法应用于水下机器人的局部路径规划中,通过构造适当的奖励信号和设置合理的训练评估条件,使算法适用于水下机器人的运动学模型。仿真试验验证了采用DDPG算法训练的水下机器人能够在航道水域环境中安全快速地规划和避开障碍物,实现自主安全航行。 展开更多
关键词 智能水下机器人 局部路径规划 深度确定策略梯度(DDPG)算法 自主安全航行
在线阅读 下载PDF
基于深度强化学习算法的投资组合策略与自动化交易研究
15
作者 杨旭 刘家鹏 +1 位作者 越瀚 张芹 《现代电子技术》 北大核心 2024年第6期154-160,共7页
投资组合策略问题是金融领域经久不衰的一个课题,将人工智能技术用于金融市场是信息技术时代一个重要的研究方向。目前的研究较多集中在股票的价格预测上,对于投资组合及自动化交易这类决策性问题的研究较少。文中基于深度强化学习算法... 投资组合策略问题是金融领域经久不衰的一个课题,将人工智能技术用于金融市场是信息技术时代一个重要的研究方向。目前的研究较多集中在股票的价格预测上,对于投资组合及自动化交易这类决策性问题的研究较少。文中基于深度强化学习算法,利用深度学习的BiLSTM来预测股价的涨跌,以强化学习的智能体进行观测,更好地判断当期情况,从而确定自己的交易动作;同时,利用传统的投资组合策略来建立交易的预权重,使智能体可以在自动化交易的过程中进行对比,从而不断优化自己的策略选择,生成当期时间点内最优的投资组合策略。文章选取美股的10支股票进行实验,在真实的市场模拟下表明,基于深度强化学习算法的模型累计收益率达到了86.5%,与其他基准策略相比,收益最高,风险最小,具有一定的实用价值。 展开更多
关键词 投资组合策略 自动化交易 深度强化学习 BiLSTM 深度确定策略梯度(DDPG) 权重对比
在线阅读 下载PDF
考虑源荷不确定性下微电网能量调度的深度强化学习策略 被引量:1
16
作者 马冲冲 王一铮 +1 位作者 王坤 冯昌森 《高技术通讯》 CAS 2023年第1期79-87,共9页
针对微电网中源荷不确定性问题,本文提出一种基于连续型深度确定性策略梯度(DDPG)算法的微电网能量调度方法。首先,以日运行成本最低为目标构建优化调度模型,并将该调度模型转化成马尔可夫决策过程(MDP),定义了马尔可夫决策模型的状态... 针对微电网中源荷不确定性问题,本文提出一种基于连续型深度确定性策略梯度(DDPG)算法的微电网能量调度方法。首先,以日运行成本最低为目标构建优化调度模型,并将该调度模型转化成马尔可夫决策过程(MDP),定义了马尔可夫决策模型的状态空间、动作空间和奖励函数。其次,利用长短期记忆(LSTM)神经网络提取环境中时序数据的未来趋势作为状态,从而在连续调度动作空间下改善深度强化学习算法收敛效果。最后,通过训练深度强化学习模型,对比多种算法下最优能量调度策略,验证了本文所提方法的有效性。 展开更多
关键词 微电网 能量管理 强化学习 深度确定策略梯度(DDPG)
在线阅读 下载PDF
航空混合动力系统能量管理策略研究综述
17
作者 张丁予 沈挺 《航空发动机》 北大核心 2025年第1期12-20,共9页
能量管理策略作为航空混合动力系统的顶层控制,用于对混合动力系统不同动力源进行能量分流,是保证系统高效运行的基础。详细论述了各类航空混合动力系统能量管理策略,系统总结了基于规则、优化和智能3类能量管理策略的特点和研究现状。... 能量管理策略作为航空混合动力系统的顶层控制,用于对混合动力系统不同动力源进行能量分流,是保证系统高效运行的基础。详细论述了各类航空混合动力系统能量管理策略,系统总结了基于规则、优化和智能3类能量管理策略的特点和研究现状。通过阐述强化学习原理,分析了深度Q网络算法和深度确定性策略梯度算法的奖励原理、神经网络更新原理、以及各自优缺点及适用场景,并提出基于规则类能量管理策略对于专家经验依赖性较高等缺陷,可以通过将其与基于智能算法内部创新融合进行缓解的措施。在此基础上,展望了能量管理策略的未来发展趋势为智能内部算法、智能与其他类型算法的融合创新等,可以为后续航空混动系统能量管理策略研究提供一定的参考。 展开更多
关键词 能量管理策略 深度Q网络算法 深度确定策略梯度算法 强化学习 航空混合动力系统
在线阅读 下载PDF
基于TD3-PER的氢燃料电池混合动力汽车能量管理策略研究 被引量:1
18
作者 虞志浩 赵又群 +2 位作者 潘陈兵 何鲲鹏 李丹阳 《汽车技术》 CSCD 北大核心 2024年第1期13-19,共7页
为优化氢燃料电池混合动力汽车的燃料经济性及辅助动力电池性能,提出了一种基于优先经验采样的双延迟深度确定性策略梯度(TD3-PER)能量管理策略。采用双延迟深度确定性策略梯度(TD3)算法,在防止训练过优估计的同时实现了更精准的连续控... 为优化氢燃料电池混合动力汽车的燃料经济性及辅助动力电池性能,提出了一种基于优先经验采样的双延迟深度确定性策略梯度(TD3-PER)能量管理策略。采用双延迟深度确定性策略梯度(TD3)算法,在防止训练过优估计的同时实现了更精准的连续控制;同时结合优先经验采样(PER)算法,在获得更好优化性能的基础上加速了策略的训练。仿真结果表明:相较于深度确定性策略梯度(DDPG)算法,所提出的TD3-PER能量管理策略的百公里氢耗量降低了7.56%,平均功率波动降低了6.49%。 展开更多
关键词 氢燃料电池混合动力汽车 优先经验采样 双延迟深度确定策略梯度 连续控制
在线阅读 下载PDF
基于多智能体深度强化学习的多无人机辅助移动边缘计算轨迹设计
19
作者 徐少毅 杨磊 《北京交通大学学报》 CSCD 北大核心 2024年第5期1-9,共9页
无人机(Unmanned Aerial Vehicle,UAV)辅助的移动边缘计算(Mobile Edge Computing,MEC)网络能够为地面用户设备(User Equipment,UE)提供优质的计算服务,但是为多无人机进行实时的轨迹设计仍是一个挑战.针对该问题,提出基于多智能体深度... 无人机(Unmanned Aerial Vehicle,UAV)辅助的移动边缘计算(Mobile Edge Computing,MEC)网络能够为地面用户设备(User Equipment,UE)提供优质的计算服务,但是为多无人机进行实时的轨迹设计仍是一个挑战.针对该问题,提出基于多智能体深度强化学习的轨迹设计算法,利用多智能体深度确定性策略梯度(Multi-Agent Deep Deterministic Policy Gradient,MADDPG)框架对无人机的轨迹进行协作设计.考虑到无人机有限的电池容量是限制无人机网络性能的重要因素,因此以无人机的能量效率之和为优化目标构建优化问题,联合优化无人机集群的轨迹和用户设备的卸载决策.每个智能体与边缘计算网络环境进行交互并观测自己的局部状态,通过Actor网络得到轨迹坐标,联合其他智能体的动作和观测训练Critic网络,从而改善Actor网络输出的轨迹策略.仿真结果表明:基于MADDPG的无人机轨迹设计算法具有良好的收敛性和鲁棒性,能够高效地提升无人机的能量效率;所提算法性能较随机飞行算法最高可提升120%,较圆周飞行算法最高可提升20%,较深度确定性策略梯度算法可提升5%~10%. 展开更多
关键词 无人机轨迹设计 移动边缘计算 强化学习 多智能体深度确定策略梯度
在线阅读 下载PDF
基于深度强化学习的增程式电动轻卡能量管理策略 被引量:2
20
作者 段龙锦 王贵勇 +1 位作者 王伟超 何述超 《内燃机工程》 CAS CSCD 北大核心 2023年第6期90-99,共10页
为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,T... 为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法的实时能量管理策略,以发动机燃油消耗量、电池荷电状态(state of charge,SOC)变化等为优化目标,在世界轻型车辆测试程序(world light vehicle test procedure,WLTP)中对深度强化学习智能体进行训练。仿真结果表明,利用不同工况验证了基于TD3算法的能量管理策略(energy management strategy,EMS)具有较好的稳定性和适应性;TD3算法实现对发动机转速和转矩连续控制,使得输出功率更加平滑。将基于TD3算法的EMS与基于传统深度Q网络(deep Q-network,DQN)算法和深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法进行对比分析,结果表明:基于TD3算法的EMS燃油经济性分别相比基于DQN算法和DDPG算法提高了12.35%和0.67%,达到基于动态规划(dynamic programming,DP)算法的94.85%,收敛速度相比基于DQN算法和DDPG算法分别提高了40.00%和47.60%。 展开更多
关键词 深度Q网络 深度确定策略梯度 双延迟深度确定策略梯度算法 增程式电动轻卡
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部