期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于毫米波深度传感的抗伴生干扰的眨眼检测 被引量:1
1
作者 荆楠 刘冠男 +1 位作者 张楠 王林 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期288-300,共13页
眨眼检测在多种实际应用场景中起着关键作用,如眼病检测、人机交互、疲劳驾驶预防等。针对来自人体的伴生干扰会严重影响眨眼信号的特征提取问题,本文提出一种非线性独立分量分析框架的自监督深度对比学习方法来分离眨眼和伴生干扰。本... 眨眼检测在多种实际应用场景中起着关键作用,如眼病检测、人机交互、疲劳驾驶预防等。针对来自人体的伴生干扰会严重影响眨眼信号的特征提取问题,本文提出一种非线性独立分量分析框架的自监督深度对比学习方法来分离眨眼和伴生干扰。本文设计一个基于时间相关性的分离网络ES-Net1,该网络将具有时间相关和时间不相关的两个正负样本序列作为网络的输入,通过ES-Net1内部的特征提取器恢复眨眼和伴生干扰信号的时间结构,从而实现非线性混合信号的分离。本文基于TI公司的AWR1642毫米波雷达平台实现mmBlinkSEN原型系统,通过14 000组数据验证mmBlinkSEN的有效性。实验结果表明,在存在人体伴生干扰情况下,mmBlinkSEN对眨眼频率的检测精度高达88%。 展开更多
关键词 眨眼检测 伴生干扰 深度对比学习 毫米波雷达 非线性独立分析
在线阅读 下载PDF
一种结合MADDPG和对比学习的无人机追逃博弈方法
2
作者 王若冰 王晓芳 《宇航学报》 EI CAS CSCD 北大核心 2024年第2期262-272,共11页
针对复杂作战环境中无人机的追逃博弈问题,建立了其马尔科夫模型,采用零和博弈思想,设计了追逃双方的奖励函数。构建了集中训练-分布执行的多智能体深度确定性强化学习算法(MADDPG)的训练流程,求解得到追逃博弈的纳什均衡解。针对以追... 针对复杂作战环境中无人机的追逃博弈问题,建立了其马尔科夫模型,采用零和博弈思想,设计了追逃双方的奖励函数。构建了集中训练-分布执行的多智能体深度确定性强化学习算法(MADDPG)的训练流程,求解得到追逃博弈的纳什均衡解。针对以追逃双方初始位置等高维向量构成的捕获域(逃逸域)难以解析表征的问题,在MADDPG博弈网络基础上,结合深度对比学习算法,通过构建和训练孪生神经网络,实现了对高维捕获域(逃逸域)的间接表征。仿真结果表明,MADDPG算法可以有效求出给定条件下的无人机追逃博弈的纳什均衡解,同时,对比学习算法结合收敛的MADDPG网络对高维的捕获域(逃逸域)表征的正确率达到95%。 展开更多
关键词 无人机(UAV) 追逃博弈 多智能体 强化学习 纳什均衡 深度对比学习
在线阅读 下载PDF
Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
3
作者 CHEN Ying-Ying JIANG Shang-Lin +3 位作者 HUANG Liang-Hui ZENG Ya-Guang WANG Xue-Hua ZHENG Wei 《生物化学与生物物理进展》 北大核心 2025年第8期2163-2172,共10页
Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accura... Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability. 展开更多
关键词 computer-aided diagnostic deep learning hepatocellular carcinoma contrast-enhanced ultrasound brightness change curve
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部