期刊文献+
共找到460篇文章
< 1 2 23 >
每页显示 20 50 100
基于Transformer与深度可分离卷积的轻量级遥感图像语义分割
1
作者 马飞 张森峰 +1 位作者 杨飞霞 徐光宪 《电光与控制》 北大核心 2025年第7期33-38,66,共7页
遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥... 遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥感图像语义分割方法。首先,引入权重自适应的多头自注意力,在全局范围内对远距离像素关联性建模,获取丰富的上下文信息;其次,构建堆叠的深度可分离卷积层,以低计算复杂度减少空间细节信息的丢失;此外利用线性注意力机制设计特征聚合模块,对全局情景信息与空间细节信息进行融合。经过在Vaihingen和Potsdam数据集上测试结果表明,所提方法的分割总体准确率分别高达92.6%和92.1%,GFLOPs仅为11.5,不仅有效提升了分割精度,而且大大降低了计算复杂度。 展开更多
关键词 遥感图像 语义分割 深度学习 深度可分离卷积 线性注意力机制
在线阅读 下载PDF
基于深度可分离卷积残差模块的抓取检测算法
2
作者 平路静 马行 +1 位作者 穆春阳 姜谱照 《传感器与微系统》 北大核心 2025年第5期133-137,共5页
针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓... 针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓取预测。利用深度可分离卷积替代传统残差结构中的标准卷积层,构建出深度可分离卷积残差模块,在不降低网络性能的基础上减少模型参数,网络模型大小仅为2.3 MB。最后,在Cornell抓取数据集上进行实验,准确率达到97.7%,检测速度为58 fps。 展开更多
关键词 卷积神经网络 深度可分离卷积 残差网络 抓取检测
在线阅读 下载PDF
融合通道-时间注意力和深度可分离卷积的欺骗语音检测
3
作者 冯嘉琪 王华朋 刘天赐 《科学技术与工程》 北大核心 2025年第22期9427-9435,共9页
自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力... 自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力机制与深度可分离卷积的网络模型CT-DSCNet。该模型在RawNet2基础上引入通道-时间注意力模块,增强对重要语音特征的关注,减少无关区域的干扰;同时采用深度可分离卷积残差块,优化计算效率与模型实时性。实验在AS-Vspoof2019、ASVspoof2021和FMFCC-A数据集上进行,结果显示CT-DSCNet在ASVspoof2019 LA测试集上的等错误率(equal error rate,EER)达到1.53%,较基线模型降低70.58%。在泛化能力方面相较其他模型也表现出色,在FMFCC-A评估集上的EER,较改进前模型相比提高了25.35%。实验验证了该方法在提升伪造语音检测性能和跨数据集适应性方面的有效性。 展开更多
关键词 深度伪造语音 注意力机制 深度可分离卷积 语音反欺骗
在线阅读 下载PDF
基于动态深度可分离卷积神经网络的管道泄漏孔径识别
4
作者 王秀芳 刘源 李月明 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期183-189,共7页
针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通... 针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通过动态深度可分离卷积层获得更强的特征表达能力,利用全局平均池化层降低网络模型参数,通过全连接层识别管道泄漏孔径。结果表明:新方法具有较高的识别精度,克服了传统模型资源开销大、功耗高的问题,降低了模型的训练时间,提升了管道泄漏孔径的识别速度,可用于工业中的管道泄漏程度监测。 展开更多
关键词 泄漏孔径识别 动态深度可分离卷积 轻量化网络 动态卷积
在线阅读 下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:3
5
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
在线阅读 下载PDF
基于深度可分离卷积神经网络的水声目标分类研究及FPGA实现 被引量:1
6
作者 张天帅 刘金涛 王良 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期152-165,共14页
针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器... 针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器解决方案。本文以MobileNetV1网络模型为基础并对其进行结构优化,在现场可编程门阵列(Field programmable gate array,FPGA)上通过并行流水线的加速结构实现它的前向推理过程,并对其权值参数进行二值化的处理,以达到减少存储量和计算量的同时加快其推理速度的目的。同时,根据在输入通道维度以及输出图像高度上分块并行的优化思想,设计了深度可分离卷积的流水优化策略,采用并行流水的结构极大减少了前向推理的时间。实验表明,在利用出海实际采集得到的水声数据集上,本文实现的系统识别精度为88.5%,在的分辨率的图像上,时间延迟达到4.23 ms。对比CPU速度提升了70.68倍,是GPU速度的68%。能效比分别为CPU的0.08%,GPU的2.12%。本文为神经网络在硬件资源有限以及功耗存在限制的轻量型移动端或者边缘设备上的应用与部署,以及对促进融合水下勘探网络的建设和水下信息的快速获取提供了设计思路。 展开更多
关键词 水声目标分类 深度可分离卷积 定点量化 FPGA
在线阅读 下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
7
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
在线阅读 下载PDF
基于连续小波分析与深度可分离卷积的水电机组工况识别
8
作者 马建军 王彤 +3 位作者 王浩宇 唐一中 郭鹏程 李昂 《水电能源科学》 北大核心 2024年第12期166-170,共5页
为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时... 为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时频信息进行了数据归一化、几何尺寸变换和格式转换等一系列处理,将其转换为数字图像形式。最后,构建了深度可分离卷积神经网络模型,依据数字图像信息对模型进行参数训练,该模型能够有效区分机组不同出力工况及过渡工况。根据我国西南地区某水电站的一台轴流转桨式水电机组的振动信号,采用所提方法实现了机组多种工况的识别,正确率达到98.06%。 展开更多
关键词 水电机组 振动信号 连续小波变换 深度可分离卷积
在线阅读 下载PDF
基于深度可分离卷积和宽残差网络的医学影像超分辨率重建 被引量:7
9
作者 高媛 王晓晨 +1 位作者 秦品乐 王丽芳 《计算机应用》 CSCD 北大核心 2019年第9期2731-2737,共7页
为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更... 为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更容易地传播到高层,提高了医学影像超分辨率的重建质量;然后,采用组归一化的方法训练网络,将卷积层的通道维度划分为组,在每个组内计算归一化的均值和方差,使得网络训练过程更快地收敛,解决了深度可分离卷积扩宽通道数导致网络训练难度增加的问题,同时网络表现出更好的性能。实验结果表明,对比传统的最近邻插值、双三次插值超分辨率算法,以及基于稀疏表达的超分辨率算法,所提算法重建出的医学影像纹理细节更加丰富、视觉效果更加逼真。对比基于卷积神经网络的超分辨率算法,基于宽残差超分辨率神经网络算法和生成对抗网络超分辨率算法,所提算法在峰值信噪比(PSNR)和结构相似性(SSIM)上有显著的提升。 展开更多
关键词 超分辨率 宽残差 深度可分离卷积 组归一化 残差块
在线阅读 下载PDF
基于多尺度深度可分离卷积的低照度图像增强算法 被引量:13
10
作者 陈清江 顾媛 《计算机工程与科学》 CSCD 北大核心 2023年第10期1830-1837,共8页
为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特... 为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特征提取模块,提取不同尺度的特征信息;最后,对不同尺寸的特征图使用2种模块,将低层空间信息与高层语义信息充分融合,获得最终输出。用深度可分离卷积代替标准卷积可大大减少网络参数量与计算量。实验结果表明,所提算法能有效地提高图像的亮度和对比度,减少模型参数量,且图像纹理细节及色彩恢复较好。 展开更多
关键词 低照度图像增强 深度可分离卷积 空洞卷积 多尺度 网格效应
在线阅读 下载PDF
基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法 被引量:13
11
作者 杨学存 和沛栋 +1 位作者 陈丽媛 李杰华 《智慧电力》 北大核心 2021年第12期88-95,共8页
针对输电线路无人机巡检图像鸟巢检测现有方法实时性差及小目标检测能力较弱的问题,提出一种基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法。首先,使用Mosaic数据增强方法增强数据集并变相提升训练集中小目标的数量;然后,在主... 针对输电线路无人机巡检图像鸟巢检测现有方法实时性差及小目标检测能力较弱的问题,提出一种基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法。首先,使用Mosaic数据增强方法增强数据集并变相提升训练集中小目标的数量;然后,在主干特征提取网络使用深度可分离卷积代替部分标准卷积,提高检测网络的速度,并降低网络参数量从而降低权重文件内存,再使用PANet代替FPN,进一步提升特征融合的能力,增强对小目标的检测能力;最后,使用标签平滑进行训练,解决由于极少量标签错误导致的网络过度自信问题和网络过拟合问题。将某供电局无人机巡检视频剪切成图像制作数据集,使用本文算法与原始YOLOv3算法进行比较,并做消融实验。实验结果表明,本文的算法逐步提升了模型的速度和精度。 展开更多
关键词 无人机巡检 YOLOv3 深度可分离卷积 PANet 目标检测
在线阅读 下载PDF
深度可分离卷积神经网络miniXception对矿工情绪特征的识别 被引量:2
12
作者 王征 张科 +1 位作者 张赫林 潘红光 《西安科技大学学报》 CAS 北大核心 2022年第3期562-571,共10页
为准确了解煤矿井下矿工情绪状况,以陕西省某煤矿为研究区,选取并建立矿工表情图像数据集。基于深度可分离卷积神经网络miniXception搭建矿工表情识别模型,对其残差连接进行改进,加入多次标准卷积与轻量化上下采样模块,并提出Exp-FReLU... 为准确了解煤矿井下矿工情绪状况,以陕西省某煤矿为研究区,选取并建立矿工表情图像数据集。基于深度可分离卷积神经网络miniXception搭建矿工表情识别模型,对其残差连接进行改进,加入多次标准卷积与轻量化上下采样模块,并提出Exp-FReLU作为网络主分支的激活函数。通过MMA面部表情公共数据集及文中自制数据集对网络进行训练,输出每类表情的识别率并将识别率最高的分类结果视作预测结果。实验分析了训练时间、精确度、召回率、F1分数以及分类准确度混淆矩阵,发现改进miniXception网络对生气、厌恶、恐惧、高兴、沮丧、惊讶以及中性7种表情的识别率分别为86%,76%,67%,97%,63%,88%以及72%;经过100次迭代,模型总体准确率达到0.833,损失值最低降至0.086。研究表明,改进miniXception网络在矿工面部表情的识别问题上具有可行性,能够满足实际应用需要。 展开更多
关键词 深度学习 矿工面部表情识别 表情特征提取 深度可分离卷积 miniXception
在线阅读 下载PDF
基于深度可分离卷积神经网络的农作物病害识别方法 被引量:11
13
作者 蔡汉明 随玉腾 +1 位作者 张镇 曾祥永 《安徽农业科学》 CAS 2019年第11期244-246,252,共4页
为了满足现代化、机械化农业生产的目标,降低模型的计算量,使农作物病害分类模型更适用于资源受限制的设备,提出了一种以深度可分离卷积为主的神经网络模型。利用深度可分离卷积和卷积相结合的方法取代标准卷积,计算量可降低至标准卷积... 为了满足现代化、机械化农业生产的目标,降低模型的计算量,使农作物病害分类模型更适用于资源受限制的设备,提出了一种以深度可分离卷积为主的神经网络模型。利用深度可分离卷积和卷积相结合的方法取代标准卷积,计算量可降低至标准卷积的12%左右,并且大大减少网络模型的参数量。通过进一步减少通道数、改变网络输入图片大小的等方式,获得12种参数量和计算量不同的模型。结果显示,对含有复杂背景和光照不均匀的10类农作物的27种病害样本图片进行分类,该研究提出的模型准确率为98.26%,且参数量仅904K。 展开更多
关键词 深度可分离卷积 病害识别 图像处理 深度学习
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
14
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3D-CNN) 深度可分离卷积(DSC) 深度学习
在线阅读 下载PDF
基于深度可分离卷积的YOLOv3行人检测算法 被引量:23
15
作者 王丹峰 陈超波 +2 位作者 马天力 李长红 苗春雨 《计算机应用与软件》 北大核心 2020年第6期218-223,共6页
YOLOv3存在参数多、计算量大和卷积核单一等问题,导致在检测行人过程中出现精确度低和检测速率慢的现象,因此提出一种基于深度可分离卷积的YOLOv3行人目标检测算法。为了减少模型计算量,利用深度可分离卷积重新构建Darknet53网络;将Ince... YOLOv3存在参数多、计算量大和卷积核单一等问题,导致在检测行人过程中出现精确度低和检测速率慢的现象,因此提出一种基于深度可分离卷积的YOLOv3行人目标检测算法。为了减少模型计算量,利用深度可分离卷积重新构建Darknet53网络;将Inception网络结构融入检测网络中以提升网络结构复杂度和检测精确度。在VOC2007数据集上的检测结果表明,该算法的精确率高达90.3%,检测速率为65.34帧/s,明显优于YOLOv3行人检测算法。 展开更多
关键词 行人检测 YOLOv3 深度可分离卷积 INCEPTION
在线阅读 下载PDF
基于深度可分离卷积的汉越神经机器翻译 被引量:2
16
作者 徐毓 赖华 +2 位作者 余正涛 高盛祥 文永华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期220-224,共5页
在汉越神经机器翻译中,由于汉越平行语料稀少,使得数据稀疏问题十分严重,极大地影响了模型的翻译效果.为了提升数据稀疏情况下的汉越神经机器翻译性能,提出一种基于深度可分离卷积的汉越神经机器翻译方法.该方法根据越南语的语言特点,... 在汉越神经机器翻译中,由于汉越平行语料稀少,使得数据稀疏问题十分严重,极大地影响了模型的翻译效果.为了提升数据稀疏情况下的汉越神经机器翻译性能,提出一种基于深度可分离卷积的汉越神经机器翻译方法.该方法根据越南语的语言特点,将越南语切分为词、音节、字符、子词4种不同的粒度并利用深度可分离卷积改进神经机器翻译模型,通过增加深度可分离卷积神经网络,对模型输入的不同粒度序列进行卷积运算,提取更多的特征数据,相比传统卷积降低了模型的理论计算量.实验结果表明,该方法在越南语4种不同翻译粒度上均取得最佳效果,一定程度上提升了汉越神经机器翻译性能. 展开更多
关键词 汉越神经机器翻译 数据稀疏 粒度 深度可分离卷积
在线阅读 下载PDF
基于深度可分离卷积神经网络轴承剩余寿命预测 被引量:6
17
作者 徐海铭 夏乔阳 +1 位作者 李勇 章兰珠 《机械强度》 CAS CSCD 北大核心 2022年第4期763-771,共9页
为进行轴承剩余寿命(Remaining Useful Life,RUL)预测,采用小波-谱峭度分析方法,首先对轴承振动序列信号进行小波包分解,并以谱峭度作为指标,确定故障特征频带并进行信号重构,然后,根据其频谱特征判断轴承是否发生故障,最终确定轴承振... 为进行轴承剩余寿命(Remaining Useful Life,RUL)预测,采用小波-谱峭度分析方法,首先对轴承振动序列信号进行小波包分解,并以谱峭度作为指标,确定故障特征频带并进行信号重构,然后,根据其频谱特征判断轴承是否发生故障,最终确定轴承振动序列信号的初始故障点(Incipient Fault Point,IFP)。在此基础上,将引入注意力(Attention)机制的一维深度可分离卷积神经网络用于轴承初始故障点之后振动信号特征的提取,相比传统卷积神经网络,深度可分离卷积层可减少网络训练参数个数,加快网络训练速度。实验结果表明,注意力机制的引入使网络能够聚焦信号中关键的特征,为重要特征赋予较大权重,避免人工处理特征的不足,利于有效特征提取,最终预测结果好于SVR、CNN、RNN等常用数据驱动方法。 展开更多
关键词 深度可分离卷积 注意力机制 神经网络 初始故障点 剩余寿命预测
在线阅读 下载PDF
深度可分离卷积在Android恶意软件分类的应用研究 被引量:6
18
作者 褚堃 万良 +1 位作者 马丹 张志宁 《计算机应用研究》 CSCD 北大核心 2022年第5期1534-1540,共7页
传统机器学习在恶意软件分析上需要复杂的特征工程,不适用于大规模的恶意软件分析。为提高在Android恶意软件上的检测效率,将Android恶意软件字节码文件映射成灰阶图像,综合利用深度可分离卷积(depthwise separable convolution,DSC)和... 传统机器学习在恶意软件分析上需要复杂的特征工程,不适用于大规模的恶意软件分析。为提高在Android恶意软件上的检测效率,将Android恶意软件字节码文件映射成灰阶图像,综合利用深度可分离卷积(depthwise separable convolution,DSC)和注意力机制提出基于全局注意力模块(GCBAM)的Android恶意软件分类模型。从APK文件中提取字节码文件,将字节码文件转换为对应的灰阶图像,通过构建基于GCBAM的分类模型对图像数据集进行训练,使其具有Android恶意软件分类能力。实验表明,该模型对Android恶意软件家族能有效分类,在获取的7630个样本上,分类准确率达到98.91%,相比机器学习算法在准确率、召回率等均具有较优效果。 展开更多
关键词 Android恶意软件 注意力机制 深度可分离卷积 灰阶图像
在线阅读 下载PDF
深度可分离卷积和标准卷积相结合的高效行人检测器 被引量:3
19
作者 张运波 易鹏飞 +2 位作者 周东生 张强 魏小鹏 《图学学报》 CSCD 北大核心 2022年第2期230-238,共9页
行人检测器对算法的速度和精确度有很高的要求。虽然基于深度卷积神经网络(DCNN)的行人检测器具有较高的检测精度,但是这类检测器对硬件设备的计算能力要求较高,因此,这类行人检测器无法很好地部署到诸如移动设备、嵌入式设备和自动驾... 行人检测器对算法的速度和精确度有很高的要求。虽然基于深度卷积神经网络(DCNN)的行人检测器具有较高的检测精度,但是这类检测器对硬件设备的计算能力要求较高,因此,这类行人检测器无法很好地部署到诸如移动设备、嵌入式设备和自动驾驶系统等轻量化系统中。基于此,提出了一种更好地平衡速度和精度的轻量级行人检测器(EPDNet)。首先,主干网络的浅层卷积使用深度可分离卷积以压缩模型的参数量,深层卷积使用标准卷积以提取高级语义特征。另外,为了进一步提高模型的性能,主干网络采用特征融合方法来增强其输出特征的表达能力。通过实验对比分析,EPDNet在2个具有挑战性的行人数据集Caltech和CityPersons上表现出了优越的性能,与基准模型相比,EPDNet在速度和精确度之间获得了更好的权衡,EPDNet的速度和精确度同时得到了提高。 展开更多
关键词 标准卷积 深度可分离卷积 特征融合 轻量化 行人检测
在线阅读 下载PDF
基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别 被引量:6
20
作者 牟文芊 董萌萍 +2 位作者 孙文杰 杨晓霞 王秀美 《山东农业大学学报(自然科学版)》 北大核心 2021年第1期23-28,共6页
茶树是重要的经济作物,叶部病害的发生直接影响其产量和质量。针对胶囊网络在茶树叶部病害图像识别中识别率低和参数量大的问题,提出了一种基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别算法。首先,由于尚无茶树叶部病害图... 茶树是重要的经济作物,叶部病害的发生直接影响其产量和质量。针对胶囊网络在茶树叶部病害图像识别中识别率低和参数量大的问题,提出了一种基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别算法。首先,由于尚无茶树叶部病害图像标准数据集,构建了茶树叶部病害图像数据集。其次,在胶囊网络中引入深度可分离卷积,并在深度可分离卷积层后加入SENet。实验结果表明,提出算法的识别准确率为94.20%,相同条件下优于其它模型。 展开更多
关键词 胶囊网络 压缩激发网络 深度可分离卷积 茶树叶部病害
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部