The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
Fluid-structure interaction (FSI) problems caused by fluid impact loads are com- monly existent in naval architectures and ocean engineering fields. For instance, the impact loads due to non-linear fluid motion in a l...Fluid-structure interaction (FSI) problems caused by fluid impact loads are com- monly existent in naval architectures and ocean engineering fields. For instance, the impact loads due to non-linear fluid motion in a liquid sloshing tank potentially affect the structural safety of cargo tanks or vessels. The challenges of numerical study on FSI problems involve not only multidisciplinary features, but also accurate description of non-linear free surface. A fully Lagrangian particle-based method , the moving particle semi-implicit and finite element coupled method ( MPS-FEM), is developed to numerically study the FSI problems. Taking into account the advantage of the Lagrangian method for large deformations of both fluid and solid bounda- ties, the MPS method is used to simulate the fluid field while the finite element method(FEM) to calculate the structure field. Besides, the partitioning strategy is employed to couple the MPS and FEM modules. To validate accuracy of the proposed algorithm, a benchmark case is numer- ically investigated. Both the patterns of free surface and the deflections of the elastic structures are in good agreement with the experimental data. Then, the present FSI solver is applied to the comparative study of the mitigating effects of rigid baffles and elastic baffles on the sloshing motions and impact loads.展开更多
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
文摘Fluid-structure interaction (FSI) problems caused by fluid impact loads are com- monly existent in naval architectures and ocean engineering fields. For instance, the impact loads due to non-linear fluid motion in a liquid sloshing tank potentially affect the structural safety of cargo tanks or vessels. The challenges of numerical study on FSI problems involve not only multidisciplinary features, but also accurate description of non-linear free surface. A fully Lagrangian particle-based method , the moving particle semi-implicit and finite element coupled method ( MPS-FEM), is developed to numerically study the FSI problems. Taking into account the advantage of the Lagrangian method for large deformations of both fluid and solid bounda- ties, the MPS method is used to simulate the fluid field while the finite element method(FEM) to calculate the structure field. Besides, the partitioning strategy is employed to couple the MPS and FEM modules. To validate accuracy of the proposed algorithm, a benchmark case is numer- ically investigated. Both the patterns of free surface and the deflections of the elastic structures are in good agreement with the experimental data. Then, the present FSI solver is applied to the comparative study of the mitigating effects of rigid baffles and elastic baffles on the sloshing motions and impact loads.