期刊文献+

BP人工神经网络模拟杨树林冠蒸腾 被引量:26

Modeling canopy transpiration of young poplar trees( Populus × euramericana cv. N3016) based on Back Propagation Artificial Neural Network
在线阅读 下载PDF
导出
摘要 利用2008和2010年的气温、饱和差、总辐射和叶面积指数作为模型输入,液流法观测的蒸腾速率作为模型输出,建立了用于杨树林冠蒸腾模拟的BP人工神经网络模型,利用2009年的观测数据对模型的模拟能力进行了检验,并应用连接权值计算得到的输入变量对输出变量的相对贡献进行了敏感性分析。结果表明:建立的BP人工神经网络蒸腾模型可以很好的模拟林冠蒸腾大小和季节变化,模拟的绝对误差和绝对相对误差的平均值分别为0.11 mm/d和9.5%,纳什效率系数为0.83;输入变量对蒸腾的相对贡献以及蒸腾与输入变量之间的相关性大小顺序相同,均为总辐射>叶面积指数>饱和差>气温。 Artificial neural network (ANN) is a practical tool and a powerful alternative to mechanism models in operation of hydrology modeling. In this paper, a three layer back propagation (BP) artificial neural network model was developed to estimate the canopy transpiration of young poplar trees (Populus × euramericana cv. N3016) in Northeast China. The combination of air temperature (Ta), vapor pressure deficit (VPD), solar radiation (Rg) and leaf area index (LAI) was chosen as the input variables, while the transpiration measured by sap flow was chosen as output variable. Observational data in growing season of 2008 and 2010 was used to develop model. The number of neurons in the input layer and output layer was 4 and 1, respectively based on the number of input and output variables. Levenberg-Marquardt (LM) algorithm was selected as the learning algorithm to train the network. Tansig and Logsig function were selected as the transfer function in the hidden layer and output layer, respectively. The learning rate and momentum factor were set as 0.1 and 0.01, respectively. The number of neurons in the hidden layer was optimized as 9 by a trial and error method. So the network structure of the developed model was determined as 4:9:1. After 49 times training, the optimal BP ANN transpiration model was determined. The data samples in 2009 were chosen to evaluate the developed model. Results showed that BP ANN transpiration model can successfully simulate the seasonal variation of transpiration. The slope of the regression equation between the simulated and measured transpiration was 0.99, while R2 was 0.85. Maximum and minimum absolute error were 0.28 mm/d and 0.003 mm/d. Mean absolute error and mean absolute relative error were 0.11 mm/d and 9.5%, and Nash-Sutcliffe coefficient of efficiency were 0.83, which all indicated the high accuracy and efficiency of developed BP ANN model. However, compared with the model performance during training process, the accuracy decreased slightly, which turned out the existence of over-fitting. At last, a sensitivity analysis of input variables on transpiration was performed using the connection weights of the developed ANN model to assess the relative importance of input variables. Results showed that the relative contribution of radiation to simulated transpiration (33.46%) was maximal, while that of temperature (16.58%) was minimal. The relative contribution of LAI (30.19%) was larger than that of VPD (19.77%), but less than that of radiation. Magnitude order of correlation coefficient between input variables and transpiration and relative contribution of input variables to transpiration presented the same order of Rg 〉 LAI 〉 VPD 〉 Ta, which provided the physical interpretation of why the developed BP ANN model can well simulate the transpiration despite it did not explain the physical process of transpiration. It must be realized that the data employed for developing ANN model contain important information about the physical process of transpiration. The BP ANN can well learn and remember this kind of information by adjusting its weights during training process, and represent it when new variables in evaluation samples were inputted into the model.
出处 《生态学报》 CAS CSCD 北大核心 2015年第12期4137-4145,共9页 Acta Ecologica Sinica
基金 国家“十二五”科技支撑计划项目(2011BAD38B0203)
关键词 蒸腾模拟 BP神经网络 液流法 敏感性分析 transpiration modeling BP ANN sap flow sensitivity analysis
作者简介 通讯作者:E-mail:dxguan@iae.ac.cn
  • 相关文献

参考文献5

二级参考文献71

共引文献249

同被引文献393

引证文献26

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部