期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
1
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
融合图神经网络、门控循环单元与注意力机制的分子性质预测方法
2
作者 随海燕 袁洪波 +3 位作者 周焕笛 赵欢 霍静倩 程曼 《河北农业大学学报》 CSCD 北大核心 2024年第6期40-46,61,共8页
分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意... 分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意力机制的网络模型(Gated recurrent unit-attention-convolutional graph neural networks,GAGCN)用于分子性质的预测。该模型通过图神经网络(Graph neural network,GNN)对分子图进行表示学习,利用节点之间的连接和信息传播来捕捉分子的结构特征;使用门控循环单元(Gated recurrent unit,GRU)对分子序列进行建模,从而捕捉分子序列中的时序信息,通过门控机制自适应地选择保留或丢弃序列中的信息。最后通过注意力机制自适应地学习不同特征之间的权重,将GNN和GRU进行融合,从而使模型可以充分利用分子的结构和序列信息,以提高分子性质预测的准确性。试验结果表明该模型对于LogP的预测精度MSE、MAE和R2分别达到了0.0010、0.0116和0.9993。本文提出的模型为新农药、新兽药的研发提供了技术支持和参考。 展开更多
关键词 药物研发 分子性质预测 神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于注意力机制—门控循环单元—BP神经网络的智能多工序工艺参数关联预测 被引量:2
3
作者 阴艳超 张曦 +1 位作者 唐军 张万达 《计算机集成制造系统》 EI CSCD 北大核心 2023年第2期487-502,共16页
鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网... 鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网络(Attention AM-GRU-BPNN)的多工序耦合参数关联预测方法。首先采用互信息方法筛选多态异构生产数据作为输入,建立ConvGRU自编码器,通过无监督学习对过程数据、工艺参数、操作参数等进行时序特征提取,同时引入时序注意力机制提取不同工序的耦合关联特征并进行向量嵌入,为不同工序的工艺参数分配注意力权重。在此基础上,设计Attention网络自学习不同时刻下工艺关联特征对质量性能指标的影响差异,再通过门控循环单元网络对重要的关联特征进行增强,并按照时序特征对单工序预测模型进行聚合,实现多工序时序特征融合,最后通过输出层BPNN神经网络精准预测产品工艺质量。实验表明,AM-GRU-BPNN有效提高了预测精度,从多工序角度为生产线工序的加工过程控制提供了依据。 展开更多
关键词 流程制造 多工序耦合 注意力机制—门控循环单元-bp神经网络 时序特征融合 关联预测
在线阅读 下载PDF
基于自注意力机制与改进循环神经网络混合模型的特高压换流变压器顶层油温预测方法
4
作者 李腾 廖军 +2 位作者 樊培培 蒋欣峰 卢一相 《现代电力》 北大核心 2024年第6期1167-1175,共9页
变压器的运行寿命与变压器绝缘性能直接相关。对于特高压换流变压器来说,油温预测可作为其绝缘性能评估的重要依据。为提高换流变油温预测精度,提出一种基于长短期记忆网络(long-short term memory network,LSTM)、自注意力机制(self-at... 变压器的运行寿命与变压器绝缘性能直接相关。对于特高压换流变压器来说,油温预测可作为其绝缘性能评估的重要依据。为提高换流变油温预测精度,提出一种基于长短期记忆网络(long-short term memory network,LSTM)、自注意力机制(self-attention mechanism,SA)和门控循环单元(gated recurrent unit,GRU)串并行混合模型的换流变顶层油温预测方法。首先,对换流变顶层油温数据进行滚动滑窗预处理;然后,建立LSTM与SA并行的预测模型,并利用GRU对并行预测的结果进行融合,经全连接层调节后输出最终预测结果。对比实验表明,相较于单一预测模型,采用混合预测模型在换流变顶层油温预测中可以取得更高的精度。 展开更多
关键词 换流变压器 顶层油温预测 长短期记忆网络 注意力机制 门控循环单元
在线阅读 下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:15
5
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
在线阅读 下载PDF
引入注意力机制时空深度神经网络的再热器温度偏差预测方法 被引量:1
6
作者 武晨雨 陶银罗 曾九孙 《中国测试》 CAS 北大核心 2024年第1期151-159,192,共10页
锅炉再热器是将低压蒸汽再进行加热至一定温度的蒸汽过热器,其稳定运行对于燃煤机组的安全和高效生产具有重要意义。在锅炉运行过程中,由于炉膛出口和水平烟道中存在残余旋转动量,造成再热器两侧出口温度产生偏差,偏差过大时有可能导致... 锅炉再热器是将低压蒸汽再进行加热至一定温度的蒸汽过热器,其稳定运行对于燃煤机组的安全和高效生产具有重要意义。在锅炉运行过程中,由于炉膛出口和水平烟道中存在残余旋转动量,造成再热器两侧出口温度产生偏差,偏差过大时有可能导致爆管事故的发生。为实现再热器温度偏差的提前预测,设计一种基于注意力机制的时空融合深度神经网络模型,分别采用卷积神经网络和门控循环神经网络提取空间和时间信息,同时引入注意力机制对各类特征进行赋权,以提升预测精度。该模型同时发挥卷积神经网络在空间信息处理和门控循环神经网络在时间信息处理方面的优势,并充分利用特征图上通道注意力机制的全局信息,解决单个模型特征信息提取不充分问题。在燃煤电厂实际数据中的应用结果表明,与其他深度学习方法相比,所提出的方法具有更高的预测精度,其均方根误差、决定系数、预测准确率分别为0.962、1.342、0.985。 展开更多
关键词 再热器温度偏差预测 卷积神经网络 门控循环神经网络 注意力机制
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
7
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于图小波注意力门控循环神经网络的交通流预测 被引量:1
8
作者 李松江 黄小莉 王鹏 《计算机应用与软件》 北大核心 2022年第12期89-95,共7页
针对现有交通流预测方法无法对局部空间及动态时间建模的问题,提出一种图小波注意力门控循环神经网络模型(GW-AGRU)。将道路网络的空间信息以图的形式表示,运用基于小波变换的图卷积神经网络从图节点中提取邻近特征;在门控循环单元中融... 针对现有交通流预测方法无法对局部空间及动态时间建模的问题,提出一种图小波注意力门控循环神经网络模型(GW-AGRU)。将道路网络的空间信息以图的形式表示,运用基于小波变换的图卷积神经网络从图节点中提取邻近特征;在门控循环单元中融入注意力机制,充分挖掘交通数据的时间相关性;融合时空特征进行回归预测。在真实数据集上的实验结果表明,所提方法的预测性能均优于其他模型,能够有效地预测长期的交通流量。 展开更多
关键词 小波变换 图卷积网络 注意力机制 门控循环单元
在线阅读 下载PDF
基于注意力卷积神经网络的视觉里程计 被引量:1
9
作者 高学金 牟雨曼 任明荣 《控制工程》 CSCD 北大核心 2024年第6期1060-1066,共7页
传统的视觉里程计(visual odometry,VO)要求图像含有大量的纹理信息,且求解过程较为复杂。针对以上问题提出基于注意力卷积神经网络的视觉里程计,对相机进行端到端的位姿估计,利用注意力机制提高模型估计轨迹的精度。首先,使用注意力-... 传统的视觉里程计(visual odometry,VO)要求图像含有大量的纹理信息,且求解过程较为复杂。针对以上问题提出基于注意力卷积神经网络的视觉里程计,对相机进行端到端的位姿估计,利用注意力机制提高模型估计轨迹的精度。首先,使用注意力-卷积神经网络(convolutional neural networks,CNN)模块提取图像特征;然后,将特征输入到门控循环单元(gated recurrent unit,GRU)学习图像的时序连接性;最后,通过全连接层降维输出相机位姿。在KITTI数据集上完成实验,并与其他方法进行对比,结果表明卷积网络中加入注意力机制可以有效提高轨迹估计的精度,且误差低于其他视觉里程计算法。 展开更多
关键词 视觉里程计 注意力机制 卷积神经网络 门控循环单元
在线阅读 下载PDF
采用门控循环神经网络的核工业管道损伤识别方法
10
作者 蒋琪 张望 +1 位作者 屈文忠 肖黎 《振动与冲击》 EI CSCD 北大核心 2024年第24期48-58,共11页
超声导波检测技术具有效率高、成本低、检测方便等优点,广泛应用于管道的损伤检测。但超声导波在管道中的传播以及压电传感器灵敏度受温度和压力载荷等环境及工况的影响,严重干扰了损伤信息的提取和识别。由此,该文提出了一种基于粒子... 超声导波检测技术具有效率高、成本低、检测方便等优点,广泛应用于管道的损伤检测。但超声导波在管道中的传播以及压电传感器灵敏度受温度和压力载荷等环境及工况的影响,严重干扰了损伤信息的提取和识别。由此,该文提出了一种基于粒子群优化-双向门控循环单元-注意力机制模型的机器学习的导波管道损伤识别方法。此模型通过在原始超声导波数据与管道状态之间建立映射关系,并加强特征提取层对损伤特征的识别能力,有效避免环境干扰并准确识别出真实的损伤信号。以某核工业循环水冷却管道试验台架为试验对象,进行温度压力变化工况下的管道损伤识别试验,通过试验和理论分析验证了该模型能有效实现管道损伤识别,且识别准确率优于门控循环网络、长短时记忆、双向门控循环网络等其他数据驱动模型,证实了该文所提方法的有效性和优越性。 展开更多
关键词 核工业管道 损伤识别 粒子群优化 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
11
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
大坝变形的双向门控循环单元网络预测模型
12
作者 姚佳池 赵二峰 +1 位作者 刘峰 宋桂华 《水利水运工程学报》 北大核心 2025年第4期99-107,共9页
针对大坝变形序列的噪声信息,一次模态分解难以对其充分挖掘剔除,通过辛几何模态分解和改进的自适应噪声完备集合经验模态分解将变形实测序列解耦为不同频率的模态分量,使用最大信息系数对模态分量和实测序列进行相关性检验,并采用小波... 针对大坝变形序列的噪声信息,一次模态分解难以对其充分挖掘剔除,通过辛几何模态分解和改进的自适应噪声完备集合经验模态分解将变形实测序列解耦为不同频率的模态分量,使用最大信息系数对模态分量和实测序列进行相关性检验,并采用小波阈值对相关性弱的模态分量去噪重构,有效剔除实测序列中的噪声,利用基于注意力机制的双向门控循环单元网络模型对重构序列进行预测。应用实例表明,采用二次模态分解方法能有效剔除大坝变形实测序列中的噪声信息,建立的组合预测模型可以充分挖掘大坝变形与环境量之间的非线性关系且具有良好的泛化能力,为大坝长效服役性态预测提供了新方法。 展开更多
关键词 大坝变形 二次模态分解 小波阈值去噪 注意力机制 双向门控循环单元 预测模型
在线阅读 下载PDF
结合多尺度注意力机制和双向门控循环网络的视频摘要模型
13
作者 闫河 刘灵坤 +2 位作者 黄俊滨 张烨 段思宇 《智能系统学报》 CSCD 北大核心 2024年第2期446-454,共9页
任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来... 任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来获取局部和全局视频序列关键特征,降低注意力值的方差。同时通过并行地引入双向门控循环网络(bidirectional recurrent neural network,BiGRU),二者的输出分别输入到改进的分类回归模块后再将结果进行加性融合,最后利用非极大值抑制(non-maximum suppression,NMS)和核时序分割方法(kernel temporal segmentation,KTS)筛选片段并分割为高质量代表性镜头,通过背包组合优化算法生成最终摘要,从而提出一种结合多尺度注意力机制和双向门控循环网络的视频摘要模型(local and global attentions combine with the BiGRU,LG-RU)。该模型在TvSum和SumMe的标准和增强数据集上进行了对比试验,结果表明该模型取得了更高的F-score,证实了该视频摘要模型保持高准确率的同时可鲁棒地对视频完成摘要。 展开更多
关键词 视频摘要 注意力机制 重要性分数 长程依赖 计算机视觉 双向门控循环神经网络 非极大值抑制 核时序分割方法
在线阅读 下载PDF
结合双向注意力机制的网络欺凌检测
14
作者 周杭霞 厉贤斌 +1 位作者 崔晨 许瑞旭 《计算机工程与设计》 北大核心 2025年第2期523-529,共7页
针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力... 针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力机制学习全局上下文语义特征和局部特征之间的交互作用,弥补各自特征之间的不足。通过胶囊网络进行深层次的特征提取。通过实验验证了该方法在网络欺凌文本检测中的准确性和有效性。 展开更多
关键词 网络欺凌 社交媒体 多尺度门控扩张因果卷积 双向注意力机制 胶囊网络 双向门控循环单元 特征提取
在线阅读 下载PDF
基于麻雀搜索算法的混合神经网络模型及其血糖预测应用
15
作者 徐鹤 许硕洋 季一木 《数据采集与处理》 北大核心 2025年第2期485-500,共16页
糖尿病是当今危害人类健康的常见疾病之一,有效管理和控制血糖对患者至关重要。传统的血糖预测模型大多为单一的深度学习模型,存在精度不足或效率太低的缺陷,制约了其在实际应用中的效果,为此,本文提出了一种基于麻雀搜索的混合神经网... 糖尿病是当今危害人类健康的常见疾病之一,有效管理和控制血糖对患者至关重要。传统的血糖预测模型大多为单一的深度学习模型,存在精度不足或效率太低的缺陷,制约了其在实际应用中的效果,为此,本文提出了一种基于麻雀搜索的混合神经网络模型,将其应用到血糖预测中。该模型结合了时域卷积网络(Temporal convolutional network,TCN)和门控循环单元(Gated recurrent unit,GRU),是基于端到端方式训练的时序神经网络,根据患者的血糖水平历史记录预测血糖。为确保该模型的泛化能力,使用两个不同来源的数据集进行验证。首先,对多源时序监测数据的特征采样频率进行设定,时间间隔为5 min,接着对数据做平滑处理和标准化,并通过TCN对时序数据捕捉时序模式和依赖特征;然后通过构建基于注意力机制的GRU(GRU⁃Attention)模型进一步提取特征并建模;最后使用麻雀搜索算法对TCN和GRU⁃Attention模型进行超参数优化,实现血糖预测模型。为了证明本文所提模型的有效性,将其预测结果与其他模型进行对比,包括LSTM、ARIMA和RNN等。研究结果表明,提出的基于麻雀搜索算法的TCN和GRU⁃Attention模型在血糖值预测任务中表现良好,两个数据集的均方根误差(Root mean square error,RMSE)和平均绝对误差(Mean absolute error,MAE)分别为0.552和0.402、0.531和0.388,均优于其他模型。 展开更多
关键词 血糖预测 麻雀搜索算法 注意力机制 时域卷积网络 门控循环单元
在线阅读 下载PDF
基于注意力机制的GRU神经网络安全态势预测方法 被引量:30
16
作者 何春蓉 朱江 《系统工程与电子技术》 EI CSCD 北大核心 2021年第1期258-266,共9页
传统的网络安全态势预测方法依赖于历史态势值的准确性,并且各种网络安全因素之间存在相关性和重要程度差异性。针对以上问题,提出一种基于注意力机制的循环门控单元(recurrent gate unit,GRU)编码预测方法,该方法利用GRU神经网络挖掘... 传统的网络安全态势预测方法依赖于历史态势值的准确性,并且各种网络安全因素之间存在相关性和重要程度差异性。针对以上问题,提出一种基于注意力机制的循环门控单元(recurrent gate unit,GRU)编码预测方法,该方法利用GRU神经网络挖掘网络安全态势数据之间的时间相关性;引入注意力机制计算安全指标的分配权重并将其编码为网络安全态势值;利用改进的粒子群优化(particle swarm optimization,PSO)算法进行超参数寻优,以加速GRU神经网络的训练。仿真分析表明,所提方法具有更快的收敛速度和较低的复杂度,并且在不同的预测时长下具有较小的均方误差和平均绝对误差。 展开更多
关键词 网络安全态势预测 注意力机制 循环门控单元 粒子群优化算法
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
17
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计 被引量:2
18
作者 管鸿盛 钱诚 +2 位作者 徐炳辉 孙博 任羿 《储能科学与技术》 CAS CSCD 北大核心 2023年第7期2229-2237,共9页
准确估计宽工况条件下的锂离子电池荷电状态(SOC)对于电动汽车的运行安全性和可靠性至关重要,是电池管理系统最重要的任务之一。本工作充分利用门控循环单元(GRU)神经网络短时处理能力与注意力机制(SAM)长时序特征提取能力,提出了一种融... 准确估计宽工况条件下的锂离子电池荷电状态(SOC)对于电动汽车的运行安全性和可靠性至关重要,是电池管理系统最重要的任务之一。本工作充分利用门控循环单元(GRU)神经网络短时处理能力与注意力机制(SAM)长时序特征提取能力,提出了一种融合SAM与GRU的神经网络模型学习锂离子电池可测参数(电压、电流)与其SOC的非线性映射关系,实现了高精度的SOC估计,从而解决锂离子电池SOC的长序列相关特征难以有效表征问题。通过北京公交动态应力测试(BBDST)数据的验证表明,与传统GRU网络相比,本文提出的SAM-GRU神经网络模型对于不同放电倍率、环境温度以及放电倍率-环境温度混合工况下工作的锂离子电池均取得了更准确的SOC估计,估计精度提升分别不小于26%、25%和11%。 展开更多
关键词 锂离子电池 荷电状态 注意力机制 门控循环单元神经网络
在线阅读 下载PDF
融合注意力机制的混合神经网络文本情感分析模型 被引量:10
19
作者 孔韦韦 田乔鑫 +2 位作者 滕金保 王照乾 常亮 《电讯技术》 北大核心 2023年第6期781-789,共9页
以往的文本情感分析模型存在忽略文本边缘信息、池化层破坏文本序列特征的问题,并且特征提取能力与识别关键信息的能力也存在不足。为了进一步提升情感分析的效果,提出了一种基于注意力机制的动态卷积神经网络(Dynamic Convolutional Ne... 以往的文本情感分析模型存在忽略文本边缘信息、池化层破坏文本序列特征的问题,并且特征提取能力与识别关键信息的能力也存在不足。为了进一步提升情感分析的效果,提出了一种基于注意力机制的动态卷积神经网络(Dynamic Convolutional Neural Network,DCNN)与双向门控循环单元(Bi-directional Gated Recurrent Unit,BiGRU)的文本情感分析模型DCNN-BiGRU-Att。首先,利用宽卷积核提取文本边缘特征,采用动态k-max池化保留了文本的相对位置序列特征。其次,构建了DCNN与BiGRU的并行混合结构,避免了部分特征损失问题,并同时保留局部特征与全局上下文信息两种特征,提高了模型的特征提取能力。最后,在特征融合之后引入注意力机制,将注意力机制的作用全局化,提高了模型识别关键信息的能力。将该模型在MR与SST-2两个公开数据集上与多个深度学习模型进行对比,其准确率分别提高了1.27%和1.07%,充分证明了该模型的合理有效性。 展开更多
关键词 文本情感分析 双向门控循环单元(BiGRU) 动态卷积神经网络(DCNN) 注意力机制 特征融合
在线阅读 下载PDF
基于分层注意力循环神经网络的司法案件刑期预测 被引量:1
20
作者 李大鹏 赵琪珲 +1 位作者 邢铁军 赵大哲 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第3期344-349,共6页
为了解决刑期预测任务准确率较差的问题,提出一种基于多通道分层注意力循环神经网络的司法案件刑期预测模型.该模型对传统的循环神经网络模型进行了改进,引入了BERT词嵌入、多通道模式和分层注意力机制,将刑期预测转化为文本分类问题.... 为了解决刑期预测任务准确率较差的问题,提出一种基于多通道分层注意力循环神经网络的司法案件刑期预测模型.该模型对传统的循环神经网络模型进行了改进,引入了BERT词嵌入、多通道模式和分层注意力机制,将刑期预测转化为文本分类问题.模型采用分层的双向循环神经网络对案件文本进行建模,并通过分层注意力机制在词语级和句子级两个层面捕获不同词语和句子的重要性,最终生成有效表征案件文本的多通道嵌入向量.实验结果表明:对比现有的基于深度学习的刑期预测模型,本文提出的模型具有更高的预测性能. 展开更多
关键词 刑期预测 分层注意力机制 双向门控循环单元 多通道 文本分类
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部