期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于泛函序列时变自回归滑动平均模型的弹箭时变模态参数递推估计方法 被引量:3
1
作者 余磊 张永励 +1 位作者 袁梦笛 刘瑞卿 《兵工学报》 EI CAS CSCD 北大核心 2020年第11期2189-2197,共9页
随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的... 随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的递推估计方法。该方法采用墨西哥帽小波基作为TARMA模型时变系数的空间基底,并借鉴于无结构化TARMA模型递推估计思想,将投影参数矩阵视为振动响应数据长度的变量,实现了投影参数矩阵的递推估计。通过有限单元法建立阿里安V号芯级运载火箭时变有限元模型,对所提方法进行验证。结果表明:递推辨识方法与传统批量算法相比,在辨识精度上,3阶模态频率辨识结果最大相对误差在5%以内;在计算效率上,递推辨识方法的计算时间缩短了9.38倍。 展开更多
关键词 弹箭时变结构 模态参数辨识 递推估计 泛函序列时变自回归滑动平均模型
在线阅读 下载PDF
乘积季节自回归积分滑动平均模型在长沙市手足口病发病率预测中的应用 被引量:10
2
作者 谈婷 陈立章 刘富强 《中南大学学报(医学版)》 CAS CSCD 北大核心 2014年第11期1170-1176,共7页
目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月... 目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月的手足口病发病率资料建立乘积季节ARIMA模型,以2013年9月至2014年2月的发病资料作为模型预测效果的检验样本,最后再用所得到的模型对2014年3月至2014年8月的月发病率进行预测。结果:经过序列平稳化、模型识别以及模型诊断后,建立乘积季节ARIMA模型(1,0,1)×(0,1,1)12,模型拟合度R2=0.81,预测均方根误差为8.29,平均绝对误差为5.83。结论:乘积季节ARIMA模型是一种较好的预测模型,所建模型拟合度较好,能为手足口病的防治工作提供参考。 展开更多
关键词 手足口病 时间序列 乘积季节自回归积分滑动平均模型
在线阅读 下载PDF
自回归滑动平均模型中阶数及参数的确定 被引量:4
3
作者 杨振成 《统计与决策》 CSSCI 北大核心 2004年第12期8-9,共2页
关键词 自回归滑动平均模型 模型阶数 时间序列 建模方法 参数估计 经济预测
在线阅读 下载PDF
细菌性痢疾自回归滑动平均和非线性自回归组合模型预测研究 被引量:6
4
作者 王克伟 李金平 +2 位作者 邓超 吴郁 邬敏辰 《第二军医大学学报》 CAS CSCD 北大核心 2017年第10期1315-1320,共6页
目的探讨单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型与ARIMA和非线性自回归(nonlinear autoregressive,NAR)组合模型在细菌性痢疾预测中的应用。方法利用江苏省2004年1月至2015年2月的细菌性痢疾数据作... 目的探讨单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型与ARIMA和非线性自回归(nonlinear autoregressive,NAR)组合模型在细菌性痢疾预测中的应用。方法利用江苏省2004年1月至2015年2月的细菌性痢疾数据作为拟合样本,以2015年3月至2016年5月的数据作为预测样本;建立的模型分别为单纯ARIMA模型和ARIMA-NAR组合模型,然后根据2个模型的平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)和平均绝对百分比误差(mean absolute percentage error,MAPE)比较模型的效果,其值越小模型效果越好。结果在模型的拟合阶段,单纯ARIMA模型的MAE、MSE和MAPE分别为0.177 5、0.081 4和0.184 7,ARIMA-NAR组合模型分别为0.094 1、0.029 5和0.104 6。在模型的预测阶段,单纯ARIMA模型的MAE、MSE和MAPE也分别大于ARIMA-NAR组合模型。结论 ARIMA-NAR组合模型对于江苏省细菌性痢疾发病率时间序列的预测效果优于单纯ARIMA模型。建议尝试使用ARIMA-NAR组合模型预测细菌性痢疾的发病率。 展开更多
关键词 自回归滑动平均模型 非线性自回归模型 神经网络 时间序列 细菌性痢疾 预测
在线阅读 下载PDF
用对称映射ARMA模型的零极点研究子波相位对反射系数序列反演的影响 被引量:4
5
作者 张亚南 戴永寿 +3 位作者 陈健 魏玉琴 丁进杰 张漫漫 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期2043-2054,共12页
为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列... 为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列反演.理论分析表明,子波相位估计不准时反射系数序列反演结果中残留一个纯相位滤波器,该纯相位滤波器的相位谱为真实子波和构造子波的相位谱之差.采用丰度和变分作为评价方法,在反演结果中确定出真实的或准确的反射系数序列.仿真实验和实际数据处理结果也验证了子波相位对反射系数序列反演的影响规律和评价方法的有效性,为进一步提高反射系数序列反演结果精度指明了研究方向. 展开更多
关键词 地震子波 反射系数序列反演 纯相位滤波器 自回归滑动平均模型 评价方法
在线阅读 下载PDF
基于非线性时间序列的预测模型检验与优化的研究 被引量:17
6
作者 单伟 何群 《电子学报》 EI CAS CSCD 北大核心 2008年第12期2485-2489,共5页
模型的适用性检验和参数优化是系统建模的最关键环节,对于预测模型的适用性检验,常采用残差方差图、最小信息准则和AIC准则等方法,存在计算量大、准确性低、模型不唯一等缺点.本文给出采用自相关系数和偏自相关系数的拖尾先对ARIMA模型... 模型的适用性检验和参数优化是系统建模的最关键环节,对于预测模型的适用性检验,常采用残差方差图、最小信息准则和AIC准则等方法,存在计算量大、准确性低、模型不唯一等缺点.本文给出采用自相关系数和偏自相关系数的拖尾先对ARIMA模型检验,再对其进行F适用性检验,克服了由于观测样本的长度是有限的,偏相关的估计存在误差,拖尾时不能为ARMA定阶的缺陷,并采用具有超线性收敛性等诸多优点的变尺度法对模型参数进行了优化,得到了较为精确的、单一AIRMA模型,该方法可应用于网络流量模型的适用性检验和模型优化,为网络流量的预测、异常检测和服务器负载预测的应用奠定了坚实的基础. 展开更多
关键词 非线性 时间序列 适用性检验 自回归求和滑动平均模型
在线阅读 下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
7
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积式自回归滑动平均模型
在线阅读 下载PDF
基于小波优化LSTM-ARMA模型的岩土工程非线性时间序列预测 被引量:21
8
作者 钱建固 吴安海 +2 位作者 季军 成龙 徐巍 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第8期1107-1115,共9页
为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)预测模型。首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预... 为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)预测模型。首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预测噪声项,并将趋势项预测值与噪声项预测值之和作为总的时间序列预测值。在此基础上,以上海云岭超深基坑工程为案例进行了基坑地表沉降分析,结果表明组合模型的预测精度要高于单一LSTM模型且更加稳定;进一步采用弹塑性有限元对基坑开挖诱发的地表沉降进行了预测,并与人工智能预测结果进行对比,验证了人工智预测模型的合理性。分析表明,当后续工况与前置工况所诱发的变形机理突变时,人工智能预测误差增大,但伴随后续工况的推进,人工智能预测误差将逐渐减小。 展开更多
关键词 岩土工程 非线性时间序列预测 小波分析 长短时记忆神经网络(LSTM) 自回归滑动平均模型(ARMA)
在线阅读 下载PDF
一种新的统计预测模型——多项式系数自回归模型 被引量:8
9
作者 吕永乐 《计算机工程与应用》 CSCD 2012年第3期237-241,共5页
传统的自回归滑动平均模型(ARMA)和新近出现的函数系数自回归模型(FAR)不能满足非线性时间序列预测分析的准确度与运算速度要求,为了改进预测性能,研究提出了一种新的统计预测模型——多项式系数自回归模型(PCAR)。给出了PCAR模型的表... 传统的自回归滑动平均模型(ARMA)和新近出现的函数系数自回归模型(FAR)不能满足非线性时间序列预测分析的准确度与运算速度要求,为了改进预测性能,研究提出了一种新的统计预测模型——多项式系数自回归模型(PCAR)。给出了PCAR模型的表示形式,详细探讨了PCAR模型的参数估计和阶次选择方法,在此基础上又提出了基于BIC准则的建模算法。同AR-MA模型相比,PCAR模型扩大了适用对象范围,有效降低了模型选择误差;同FAR模型相比,它具有参数模型的特点,避免了系数函数局部线性回归估计所存在的不足;分析了PCAR模型与ARMA、FAR模型的等价条件。通过实验分析得出了PCAR模型较ARMA、FAR模型的单步预测准确度分别提高了99.65%和18.7%的结论,而且PCAR建模运算所需时间仅为FAR模型的0.2%。 展开更多
关键词 时间序列分析 非线性预测 自回归模型 自回归滑动平均(ARMA)模型 函数系数自回归(FAR)模型
在线阅读 下载PDF
非线性时间序列预报的隐多分辨ARMA模型 被引量:1
10
作者 高伟 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期671-678,共8页
研究一类用于非线性时间序列预报的隐多分辨自回归滑动平均(ARMA)模型,该模型以ARMA模型为初始细水平模型(即隐多分辨模型的基本块).证明了模型的建模精度由水平问的方差决定.研究了新模型的自相关函数结构,给出了参数估计的Bayes方法... 研究一类用于非线性时间序列预报的隐多分辨自回归滑动平均(ARMA)模型,该模型以ARMA模型为初始细水平模型(即隐多分辨模型的基本块).证明了模型的建模精度由水平问的方差决定.研究了新模型的自相关函数结构,给出了参数估计的Bayes方法和Metropolis-Hasting算法.进一步提出了一种可以直接用于不同基本块的隐多分辨模型的非线性时间序列预报方法,证明了其比其他的线性预报方法和隐多分辨模型预报方法降低了预报误差.最后通过数值模拟和实例验证了模型和预报方法,并和其他模型进行比较,结果表明新提出模型和预报方法能够更好地描述数据的特征,提高预报的精度. 展开更多
关键词 非线性时间序列预报 隐多分辨自回归滑动平均模型 自相关函数
在线阅读 下载PDF
基于时间序列季节分类模型的轨道交通客流短期预测 被引量:17
11
作者 唐继强 钟鑫伟 +1 位作者 刘健 李天瑞 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第7期31-38,60,共9页
轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和... 轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和季节时间序列;采用乘法季节自回归差分滑动平均模型建立客流季节分类模型;使用季节分类模型预测对应类型日期的客流。实验表明:季节分类模型既能有效预测轨道交通客流,又能较好地避免预测误差波动性问题。 展开更多
关键词 交通工程 客流短期预测 季节分类模型 时间序列 乘法季节自回归差分滑动平均模型
在线阅读 下载PDF
广西GDP的时间序列模型的建立与实证分析 被引量:2
12
作者 顾剑华 周婉枝 《广西大学学报(自然科学版)》 CAS CSCD 2002年第z1期142-144,共3页
综合运用了判别时间序列平稳性的方法,利用单位根方法检验时间序列的差分阶数;利用自相关函数图和偏相关函数图判别时间序列模型的自回归阶数(AR(p))和滑动平均阶数(MA(q)),建立广西GDP的时间序列模型.再利用TSP软件采用OLS法对时间序... 综合运用了判别时间序列平稳性的方法,利用单位根方法检验时间序列的差分阶数;利用自相关函数图和偏相关函数图判别时间序列模型的自回归阶数(AR(p))和滑动平均阶数(MA(q)),建立广西GDP的时间序列模型.再利用TSP软件采用OLS法对时间序列模型进行回归分析与显著性检验,并对通过检验的回归结果进行分析与预测. 展开更多
关键词 时间序列模型 差分阶数 自回归阶数 滑动平均阶数 相关图 单位根
在线阅读 下载PDF
基于ARMAV模型和J-散度的结构损伤识别 被引量:2
13
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(ARMAV)模型 J-散度 时间序列分析
在线阅读 下载PDF
基于H-P滤波法、ARIMA和VAR模型的库区滑坡位移综合预测 被引量:24
14
作者 孟蒙 陈智强 +2 位作者 黄达 曾彬 陈赐金 《岩土力学》 EI CAS CSCD 北大核心 2016年第S2期552-560,共9页
受库水位涨落及降雨等影响,库区滑坡位移表现出明显的周期性。基于位移时间序列分析,将滑坡监测位移分解为趋势项与周期项之和。趋势项反映滑坡变形的长期趋势,其主要受滑坡本身地质结构等因素影响。周期项反映滑坡变形的波动性,其主要... 受库水位涨落及降雨等影响,库区滑坡位移表现出明显的周期性。基于位移时间序列分析,将滑坡监测位移分解为趋势项与周期项之和。趋势项反映滑坡变形的长期趋势,其主要受滑坡本身地质结构等因素影响。周期项反映滑坡变形的波动性,其主要受外部因素影响。以三峡库区巫山塔坪滑坡为例,考虑长江水位与降雨量影响,采用H-P滤波法从滑坡位移中分解出趋势项及周期项,利用差分自回归滑动平均模型(ARIMA)对趋势项进行平稳处理并计算趋势项预测值,利用向量自回归模型(VAR)计算周期项预测值。趋势项预测值与周期项预测值之和为滑坡位移预测值。与实际监测值及多种方法分析比较,表明综合预测所得结果能较好反映滑坡变形的趋势性和波动性,位移预测效果较好。 展开更多
关键词 滑坡 变形预测 时间序列 H-P滤波法 差分自回归滑动平均(ARIMA)模型 向量自回归(VAR)模型
在线阅读 下载PDF
非线性时间序列井间连通性分析方法 被引量:16
15
作者 金志勇 刘启鹏 +2 位作者 韩东 赵润林 巴海涛 《油气地质与采收率》 CAS CSCD 北大核心 2009年第1期75-77,81+116,共5页
基于非线性时间序列的油藏动态分析方法是把油藏视为一个黑箱非线性系统。建立了单井非线性自回归模型和井组非线性自回归滑动平均模型。前者适用于没有进行注水开发的新油藏,后者是针对已经进行注水开发油藏的时间序列模型。在井组非... 基于非线性时间序列的油藏动态分析方法是把油藏视为一个黑箱非线性系统。建立了单井非线性自回归模型和井组非线性自回归滑动平均模型。前者适用于没有进行注水开发的新油藏,后者是针对已经进行注水开发油藏的时间序列模型。在井组非线性自回归滑动平均模型中,注入井对地层注水视为对油藏系统的输入信号,生产井的产油量、产水量、含水率和井底压力视为对输入信号的系统响应。这种非线性模型通过支持向量机的方法建立起来,然后通过对这个非线性系统的敏感性分析确定生产井和注水井的动态连通关系,并且根据模型可以预测下一个时间段生产井的动态响应。利用该方法针对大庆油田20口井的动态进行了分析,结果表明,85%的预测结果和实际地质认识是符合的。 展开更多
关键词 非线性时间序列 油藏动态分析 支持向量机 自回归模型 滑动平均模型
在线阅读 下载PDF
成都市城区空气污染指数的时间序列分析 被引量:31
16
作者 柴微涛 宋述军 宋学鸿 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期485-488,共4页
根据成都市城区2001-2005年的大气污染监测资料,获取和分析成都市空气污染指数。采用时间序列分析方法,对空气污染指数建立自回归滑动平均模型模拟实测的空气污染指数,并对模拟结果进行了检验。结果表明:成都市空气污染状况具有夏... 根据成都市城区2001-2005年的大气污染监测资料,获取和分析成都市空气污染指数。采用时间序列分析方法,对空气污染指数建立自回归滑动平均模型模拟实测的空气污染指数,并对模拟结果进行了检验。结果表明:成都市空气污染状况具有夏季较好、其他季节较差的季节性交化规律。采用时间序列分析大气污染状况是可行性的。 展开更多
关键词 空气污染指数 大气污染 时间序列分析 自回归滑动平均模型
在线阅读 下载PDF
基于ARIMA模型的航空装备事故时序预测 被引量:17
17
作者 甘旭升 端木京顺 +1 位作者 高建国 赵录峰 《中国安全科学学报》 CAS CSCD 北大核心 2012年第3期97-102,共6页
为提高航空装备事故预防的针对性、有效性和主动性,预防和减少事故的发生,降低事故造成的损失,提出一种时序的差分自回归滑动平均(ARIMA)模型。其建模过程先在时间序列基础上辨识一个试用模型,然后加以诊断,并作出必要调整,反复进行辨... 为提高航空装备事故预防的针对性、有效性和主动性,预防和减少事故的发生,降低事故造成的损失,提出一种时序的差分自回归滑动平均(ARIMA)模型。其建模过程先在时间序列基础上辨识一个试用模型,然后加以诊断,并作出必要调整,反复进行辨识、估计、诊断,直至获得较为满意的ARIMA预测模型。在实例验证中,所构建的用来预测美国空军飞行事故万时率的ARIMA模型,能够将预测的平均相对误差控制在7%以内,预测结果总体反映航空装备的实际安全状况。 展开更多
关键词 航空装备事故 时间序列 差分自回归滑动平均(ARIMA)模型 飞行事故万时率 单位根检验
在线阅读 下载PDF
交通事故损失的时间序列分析 被引量:10
18
作者 邵辉 王钰 +1 位作者 李保安 张蓉爱 《中国安全科学学报》 CAS CSCD 2007年第7期10-13,共4页
为揭示交通事故经济损失的变化规律,笔者研究并利用时间序列的方法,建立了ARIMA模型,对1985—2005年全国交通事故经济损失的数据进行了分析和预测。根据原始数据的特点,选择随机时间序列分析方法。通过对模型的识别和参数的选择,得到200... 为揭示交通事故经济损失的变化规律,笔者研究并利用时间序列的方法,建立了ARIMA模型,对1985—2005年全国交通事故经济损失的数据进行了分析和预测。根据原始数据的特点,选择随机时间序列分析方法。通过对模型的识别和参数的选择,得到2006—2008年的交通事故损失的预测值分别为2.9559,2.9707和3.0129亿元,置信区间为95%。通过对1985—2005年交通事故经济损失的预测结果与原始数据的比较表明,预测结果接近原始数据,该方法为交通事故的预防和控制提供了技术指导和有益参考。 展开更多
关键词 交通事故 损失 时间序列分析 ARIMA(差分自回归滑动平均)模型 统计分析系统(SAS)
在线阅读 下载PDF
基于ARMA模型的在线电视剧流行度预测 被引量:6
19
作者 陈春燕 张钰 +1 位作者 常标 吕俊龙 《计算机科学与探索》 CSCD 北大核心 2016年第3期425-432,共8页
在线电视剧的迅速普及和发展,引发了一个全新的研究问题,即在线电视剧流行度预测。电视剧情节演化的连续性,使相邻剧集的流行度序列具有很强的线性相关性。扩展了自回归滑动平均(autoregressive moving average,ARMA)模型。具体地,采用... 在线电视剧的迅速普及和发展,引发了一个全新的研究问题,即在线电视剧流行度预测。电视剧情节演化的连续性,使相邻剧集的流行度序列具有很强的线性相关性。扩展了自回归滑动平均(autoregressive moving average,ARMA)模型。具体地,采用多集单天和多集多天两种不同的建模策略,使用电视剧之间共享参数方法进行模型参数估计。利用均方根误差(root mean squared error,RMSE)评价预测方法的准确性,在大量的真实数据集上的实验表明,上述两种策略相比于对比方法,可以使RMSE平均分别降低22.0%和32.3%。 展开更多
关键词 自回归滑动平均模型 流行度预测 在线电视剧 时间序列 共享参数
在线阅读 下载PDF
苏州市空气质量的时间序列变化过程研究 被引量:12
20
作者 黄进 张金池 《环境科学与技术》 CAS CSCD 北大核心 2009年第6期49-52,共4页
城市空气质量水平是以空气质量指数(API)来表征的,API的时空变化可以反映城市空气质量的变化过程。文章以苏州市2002~2007年各月API值为研究对象,将其构成一组时间序列,采用时间序列理论中的小波分析原理和差分自回归滑动平均模型(ARI... 城市空气质量水平是以空气质量指数(API)来表征的,API的时空变化可以反映城市空气质量的变化过程。文章以苏州市2002~2007年各月API值为研究对象,将其构成一组时间序列,采用时间序列理论中的小波分析原理和差分自回归滑动平均模型(ARIMA)原理对这组API序列进行趋势的辨识和数值预测,结果表明(1)苏州市近年来的空气质量水平不断提高,并将稳定保持在一个良好的水平上;(2)差分自回归滑动平均模型ARIMA(2,2,2)在拟合该地区API值时间尺度上的变化趋势效果较好,能够较好的预测苏州市月空气质量水平。 展开更多
关键词 空气质量指数 小波分析 差分自回归滑动平均模型 时间序列
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部