期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法
1
作者 付强 胡东 +2 位作者 杨童亮 罗国庆 谭为民 《机械强度》 北大核心 2025年第6期48-56,共9页
针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing,CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine,DMKELM)理论,提出了CS-DMKELM滚动轴承智能诊断... 针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing,CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine,DMKELM)理论,提出了CS-DMKELM滚动轴承智能诊断模型。首先,对变换域信号阈值处理得到稀疏信号,使用高斯随机矩阵作为测量矩阵,对处理后的数据进行压缩;其次,使用压缩后的数据作为DMKELM的输入信号,利用粒子群优化(Particle Swarm Optimization,PSO)算法对关键参数进行优化,实现故障的智能诊断。结果表明,所提方法可使用较少的轴承诊断数据,利用DMKELM从少量测量信号中自动提取轴承的特征信息,实现了轴承的快速故障诊断。在诊断时间0.55 s的情况下,最终识别准确率可达99.29%。所提方法不仅诊断时间更短,而且诊断精度较高,为处理海量轴承数据的故障诊断提供了新方法。 展开更多
关键词 压缩感知 轴承 函数 极限学习 故障诊断
在线阅读 下载PDF
基于因果正则化极限学习机的风电功率短期预测方法 被引量:7
2
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则 结构因果模型 平均因果效应向量 极限学习
在线阅读 下载PDF
高光谱结合哈里斯鹰优化核极限学习机鉴别化橘红胎切片年份 被引量:1
3
作者 谢百亨 马晋芳 +5 位作者 周泳欣 韩雪勤 陈嘉泽 朱思祁 杨懋勋 黄富荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1494-1500,共7页
化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化... 化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化橘红胎切片样本400~1000 nm的高光谱图像。首先采用主成分分析法(PCA)分析化橘红胎切片的原始反射光谱,然后分别采用Savitzky-Golay平滑(S-G平滑)、多元散射校正(MSC)、标准正态变量交换(SNV)对样本光谱进行预处理并建立核极限学习机(KELM)模型;发现经SNV处理的样本光谱的判别准确率最高,训练集达到99.24%,测试集95.56%;进一步用竞争性自适应重加权算法(CARS)、蒙特卡洛无信息变量消除法(MCUVE)对样本光谱进行特征波长的选择;最后,采用KELM建立判别模型,同时使用哈里斯鹰算法(HHO)优化KELM参数选择并比较建模效果。结果表明:基于HHO-KELM的判别效果相较KELM有0.76%~4.44%的提升,通过MCUVE筛选所得特征波段信息冗余明显减少且精度提升,训练集和测试集最佳准确率均可达100%,故采用高光谱成像技术可以实现对不同年份的化橘红胎切片进行无损鉴别。 展开更多
关键词 橘红胎 高光谱成像 特征波长 极限学习
在线阅读 下载PDF
基于动态步长交替方向乘子法正则化极限学习机 被引量:1
4
作者 卢辉煌 邹伟东 李钰祥 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第3期264-273,共10页
为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记... 为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记为VAR-ADMM-RELM.该算法在ADMM算法的基础上采用动态衰减步长进行迭代,并同时使用L1和L2正则化对模型复杂度进行约束,解得具有稀疏性和鲁棒性的极限学习机输出权重.在UCI和MedMNIST数据集中对VAR-ADMM-RELM、极限学习机(extreme learning machine,ELM)、正则化极限学习机(regularized ELM,RELM)和基于ADMM的L1正则化ELM(ADMMRELM)进行拟合、分类和回归对比实验.结果表明,VAR-ADMM-RELM算法的平均分类准确率和平均回归预测精度分别比ELM算法提升了1.94%和2.49%,较标准ADMM算法可以取得3~5倍的速度提升,且对异常值干扰具有更好的鲁棒性和泛化能力,在高维度多样本的场景下建模效率逼近标准极限学习机.该方法有效提升了ADMM算法的收敛速度,取得了比主流ELM算法更加优秀的性能表现. 展开更多
关键词 人工智能 学习 极限学习 交替方向乘子法 正则 动态衰减
在线阅读 下载PDF
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测 被引量:5
5
作者 张代凤 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预... 准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。 展开更多
关键词 日径流预测 正则极限学习 蜣螂优算法 珍鲹优算法 泥环算法 小波包变换 三峡水库
在线阅读 下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别 被引量:4
6
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习 小波函数 烟叶烘烤 特征提取 识别
在线阅读 下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:34
7
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则 极限学习 贝叶斯优算法 平均相对误差 方差
在线阅读 下载PDF
一种基于正则优化的批次继承极限学习机算法 被引量:5
8
作者 刘彬 杨有恒 +3 位作者 赵志彪 吴超 刘浩然 闻岩 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1734-1742,共9页
极限学习机(ELM)作为一种新型神经网络,具有极快的训练速度和良好的泛化性能。针对极限学习机在处理高维数据时计算复杂度高,内存需求巨大的问题,该文提出一种批次继承极限学习机(B-ELM)算法。首先将数据集均分为不同批次,采用自动编码... 极限学习机(ELM)作为一种新型神经网络,具有极快的训练速度和良好的泛化性能。针对极限学习机在处理高维数据时计算复杂度高,内存需求巨大的问题,该文提出一种批次继承极限学习机(B-ELM)算法。首先将数据集均分为不同批次,采用自动编码器网络对各批次数据进行降维处理;其次引入继承因子,建立相邻批次之间的关系,同时结合正则化框架构建拉格朗日优化函数,实现批次极限学习机数学建模;最后利用MNIST, NORB和CIFAR-10数据集进行测试实验。实验结果表明,所提算法具有较高的分类精度,并且有效降低了计算复杂度和内存消耗。 展开更多
关键词 极限学习 高维数据 批次学习 继承因子 正则
在线阅读 下载PDF
基于正则化与遗忘因子的极限学习机及其在故障预测中的应用 被引量:12
9
作者 杜占龙 李小民 +2 位作者 郑宗贵 张国荣 毛琼 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1546-1553,共8页
为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-... 为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-ELM泛化能力的缺点。在贯序更新阶段,RFOS-ELM通过引入自适应遗忘因子实时调整新旧训练样本所占比重,推导正则化条件下带遗忘因子RFOS-ELM的递推更新算法,提高其对动态变化系统的跟踪能力。某型无人机机载发射机故障预测实例表明,相比于传统OS-ELM和正则化OS-ELM算法,本文提出方法具有更高的预测精度。 展开更多
关键词 故障预测 时间序列 在线贯序极限学习 l2-正则 遗忘
在线阅读 下载PDF
基于流形正则化的在线半监督极限学习机 被引量:6
10
作者 王萍 王迪 冯伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1153-1158,1167,共7页
在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-... 在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-ELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSS-ELM(buffer)在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSS-ELM(buffer)的泛化能力与SS-ELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSS-ELM(buffer)不仅解决了内存问题,还在基本保持SS-ELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中. 展开更多
关键词 极限学习 半监督学习 在线学习 流形正则
在线阅读 下载PDF
基于核函数的加权极限学习机污水处理在线故障诊断 被引量:9
11
作者 许玉格 邓文凯 陈立定 《化工学报》 EI CAS CSCD 北大核心 2016年第9期3817-3825,共9页
污水生化处理中的运行故障会引起出水水质不达标、运行费用增高和环境二次污染等严重问题,需要及时准确地对运行故障进行诊断。考虑到污水处理过程运行状态数据的不平衡性造成故障诊断准确率下降,提出了一种基于核函数的加权极限学习机... 污水生化处理中的运行故障会引起出水水质不达标、运行费用增高和环境二次污染等严重问题,需要及时准确地对运行故障进行诊断。考虑到污水处理过程运行状态数据的不平衡性造成故障诊断准确率下降,提出了一种基于核函数的加权极限学习机污水处理过程实时在线故障诊断方法。该方法以极限学习机为基础,采用加权的方式处理数据的不平衡特性,通过核函数的非线性映射来提高数据线性可分的程度。仿真实验证明,本文建立的污水处理在线故障诊断模型在线测试精度高,泛化性能好,模型在线更新速度快,能够比较好地满足准确性和实时性,实现对污水处理过程的在线故障诊断。 展开更多
关键词 加权极限学习 函数 在线建模 污水处理 故障诊断 仿真实验
在线阅读 下载PDF
基于流形正则化的批量分层编码极限学习机 被引量:2
12
作者 刘彬 杨有恒 +3 位作者 刘静 王卫涛 刘浩然 闻岩 《计量学报》 CSCD 北大核心 2021年第7期937-943,共7页
针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督... 针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督编码,以实现深层特征提取;最后利用流形正则化思想构建含有继承因子的流形分类器,以保持数据的完整性,提高算法的泛化性能。实验结果表明,该方法实现简单,在NORB,MNIST和USPS数据集上的分类准确率分别可以达到92.16%、99.35%和98.86%,与其它极限学习机算法对比,在降低计算复杂度和减少CPU内存消耗上具有较明显的优势。 展开更多
关键词 计量学 极限学习 高维数据 批次学习 无监督编码 流形正则
在线阅读 下载PDF
基于Jerk流形正则化深度极限学习机的电能质量复合扰动识别 被引量:3
13
作者 赵晨 李开成 +2 位作者 林寿英 曾子莹 林炜鑫 《华南师范大学学报(自然科学版)》 CAS 北大核心 2021年第4期8-16,共9页
为了有效利用电能质量复合扰动识别中存在的大量难以标注的实测样本,提出了一种基于Jerk流形正则化深度极限学习机(DJRELM)的半监督扰动学习方法.算法通过堆叠嵌入Jerk流形正则化的极限学习机自编码器(JRELM-AE)实现在复合扰动特征自动... 为了有效利用电能质量复合扰动识别中存在的大量难以标注的实测样本,提出了一种基于Jerk流形正则化深度极限学习机(DJRELM)的半监督扰动学习方法.算法通过堆叠嵌入Jerk流形正则化的极限学习机自编码器(JRELM-AE)实现在复合扰动特征自动提取的同时保持数据内部流形结构.分类层通过阈值预测极限学习机和Jerk正则化半监督极限学习机的结合将多层网络扩展到多标签半监督分类应用.实验结果表明:该方法在不同噪声环境下的分类准确率均高于几种基于极限学习机的监督学习、半监督学习算法、传统多层极限学习机和深度卷积神经网络,具有理论意义和实用价值. 展开更多
关键词 电能质量 扰动识别 极限学习 流形正则 半监督学习
在线阅读 下载PDF
基于信息测度和核函数极限学习机的图像边缘检测 被引量:4
14
作者 邱东 李佳禧 +1 位作者 杨宏韬 刘克平 《计算机应用与软件》 北大核心 2019年第10期156-161,共6页
图像的边缘检测技术是机器视觉中图像识别、图像分割与处理以及模板匹配的基础。针对传统边缘检测算子的检测精度有限,对噪声的敏感度较高的问题,提出一种基于信息测度和核函数极限学习机(KELM)的图像边缘检测方法。该方法构造一个描述... 图像的边缘检测技术是机器视觉中图像识别、图像分割与处理以及模板匹配的基础。针对传统边缘检测算子的检测精度有限,对噪声的敏感度较高的问题,提出一种基于信息测度和核函数极限学习机(KELM)的图像边缘检测方法。该方法构造一个描述边缘点信息测度的特征矢量,将特征矢量样本数据集对核函数极限学习机(KELM)进行分类训练,实现边缘检测。同时采用度量F评价模型对不同边缘检测方法的性能进行评价。实验结果表明,ISKELM图像边缘检测的效果优于Canny算子、Sobel算子以及ELM图像边缘检测,提取的图像边缘更加清晰,对于噪声的抑制能力更强,虚假边缘大大减少。 展开更多
关键词 边缘检测 信息测度 函数极限学习(KELM)
在线阅读 下载PDF
基于QPSO正则化极限学习机的轴承故障诊断 被引量:5
15
作者 刘鑫 任海莉 《组合机床与自动化加工技术》 北大核心 2021年第3期36-40,共5页
从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编... 从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编码器(Denoising AutoEncoder,DAE)的故障分类方法。首先,将振动信号经过快速傅里叶变换得到的频域系数作为高维数据,然后利用堆叠降噪自动编码器(Stacked Denoising Autoencoders,SDAE)对高维数据进行学习,提取更具鲁棒性的特征,再将该特征作为RELM的输入进行分类,得到故障诊断模型。针对RELM中正则化参数选取困难问题,采用量子粒子群优化算法(Quantum-behaved particle swarm optimization,QPSO)进行参数优化。实验结果表明,基于SDAE-RELM的诊断方法在泛化性和故障识别率都优于SDAE和其他分类算法结合的故障识别方法。 展开更多
关键词 滚动轴承 降噪自动编码器 正则极限学习 特征提取
在线阅读 下载PDF
基于核极限学习机的下肢关节力矩预测方法 被引量:1
16
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯函数 极限学习 粒子群优算法 遗传算法 均方根误差 相关系数
在线阅读 下载PDF
分布式环境中基于核函数的极限学习机
17
作者 赵相国 毕鑫 +1 位作者 张祯 杨洪波 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期769-772,共4页
针对海量数据规模下的集中式核函数极限学习机的性能问题,将基于核函数的极限学习机扩展到云计算技术框架下,提出了基于MapReduce的分布式核函数极限学习机MR-KELM.该算法将分布式径向基核函数计算出的核函数矩阵进行分布式矩阵分解,并... 针对海量数据规模下的集中式核函数极限学习机的性能问题,将基于核函数的极限学习机扩展到云计算技术框架下,提出了基于MapReduce的分布式核函数极限学习机MR-KELM.该算法将分布式径向基核函数计算出的核函数矩阵进行分布式矩阵分解,并通过分布式矩阵向量乘法得到分类器输出权重,减小了网络通讯和数据交换代价.实验结果表明,MR-KELM算法能够在不影响基于核函数的极限学习机的计算理论的前提下,具有较好的可扩展性和分类训练性能. 展开更多
关键词 极限学习 函数 分类 分布式 MAPREDUCE
在线阅读 下载PDF
基于天牛群优化与改进正则化极限学习机的网络入侵检测 被引量:25
18
作者 王振东 刘尧迪 +2 位作者 杨书新 王俊岭 李大海 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期3024-3041,共18页
正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于... 正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于随机初始化参数带来的潜在缺陷,提出基于天牛群优化与改进正则化极限学习机(BSO-IRELM)的网络入侵检测算法.使用LU分解求解RELM的输出权值矩阵,进一步缩短了RELM的训练时间,同时利用BSO对RELM的权值和阈值进行联合优化.为避免BSO算法陷入局部最优,引入Tent映射反向学习、莱维飞行的群体学习与动态变异策略提升优化性能.实验结果表明,在机器学习UCI数据集上,相比于RELM、IRELM、GA-IRELM、PSO-IRELM等算法,BSO-IRELM的数据分类性能提升明显.最后,将BSO-IRELM应用于网络入侵检测数据集NSL-KDD,并与BP(Back propagation)、LR(Logistics regression)、RBF(Radial basis function)、AB(AdaBoost)、SVM(Support vector machine)、RELM、IRELM等算法进行了对比,结果证明BSO-IRELM算法在准确率、精确率、真正率和假正率等指标上均具有明显优势. 展开更多
关键词 入侵检测 正则极限学习 LU分解 天牛群优算法
在线阅读 下载PDF
基于进化算法优化的混合核极限学习机建模 被引量:6
19
作者 张德全 魏忠军 +1 位作者 汤健 赵立杰 《控制工程》 CSCD 北大核心 2013年第6期1127-1130,共4页
基于核方法的软测量模型的核类型、核参数及学习参数影响模型泛化性能,而且核类型和核参数还与建模数据相关,难以有效选择;常用的基于支持向量机(SVM)的建模算法虽然泛化性好,除了模型的学习参数难以选择外,其学习速度较慢。为解决这些... 基于核方法的软测量模型的核类型、核参数及学习参数影响模型泛化性能,而且核类型和核参数还与建模数据相关,难以有效选择;常用的基于支持向量机(SVM)的建模算法虽然泛化性好,除了模型的学习参数难以选择外,其学习速度较慢。为解决这些问题,提出了基于进化算法优化的混合核极限学习机建模方法。该方法选用具有较快学习速度和较好泛化性能的核极限学习机(KELM)算法建立软测量模型,其核函数则采用具有局部和全局特性的径向基(RBF)核函数和多项式核函数加权得到的混合核函数。软测量模型的相关参数,即混合核的权系数、核参数及和KLELM模型的惩罚参数通过进化算法同时优化选择。最后采用基于近红外谱(NIR)数据建立的软测量模型验证了所提方法的有效性。 展开更多
关键词 软测量 混合函数 极限学习(KELM) 算法
在线阅读 下载PDF
基于主成分-正则化极限学习机的超高密度电法非线性反演 被引量:18
20
作者 江沸菠 戴前伟 董莉 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第9期3356-3369,共14页
超高密度电法是一种新的地球物理探测技术,它通过多通道数据采集和多装置数据联合反演,极大地提高了电法勘探的成像精度.本文提出一种主成分-正则化极限学习机(PC-RELM)非线性反演方法,该方法针对超高密度电法所获取的高维勘探数据进行... 超高密度电法是一种新的地球物理探测技术,它通过多通道数据采集和多装置数据联合反演,极大地提高了电法勘探的成像精度.本文提出一种主成分-正则化极限学习机(PC-RELM)非线性反演方法,该方法针对超高密度电法所获取的高维勘探数据进行反演建模,通过随机设定隐层参数来简化模型的学习过程,通过主成分分析方法来进行高维数据降维,最后引入正则化因子提高反演模型的泛化能力.论文给出了超高密度电法的原理、样本构造方法和非线性反演流程,使用交叉验证方法获得了优化的隐节点数目和正则化参数,构造了优化的反演模型.通过两个经典的超高密度模型的反演结果表明,该方法能够较好地解决超高密度电法反演的高维数据非线性建模问题,能够弥补单一装置数据反演的不足,同时相较其他的非线性反演方法(ELM,BPNN和GRNN)具有更加准确的反演结果. 展开更多
关键词 超高密度电法 正则 极限学习 主成分分析
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部