期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
1
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 局部保持映射 成本优化 高斯过程分类器
在线阅读 下载PDF
基于图嵌入的正交局部保持投影无监督特征选择
2
作者 朱建勇 李兆祥 +2 位作者 徐彬 杨辉 聂飞平 《计算机科学》 CSCD 北大核心 2023年第S02期540-548,共9页
传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(O... 传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(Orthogonal Locality Preserving Projection Unsupervised Feature Selection via Graph Embedding,OLPPFS)算法。首先,利用能够保持数据局部几何流形结构的局部保持投影方法增强数据的线性映射能力,同时约束正交方向投影以方便数据重构;其次,通过图嵌入学习方法快速构建稀疏相似图来描述样本数据的内在结构;接着,采用l_(2,0)范数约束投影矩阵的值,准确选择指定数目的判别性特征子集;最后,针对l_(2,0)范数NP难题,设计一种有效求解l_(2,0)范数问题的无参迭代算法求解该模型。仿真结果表明了所提算法的有效性和优越性。 展开更多
关键词 无监督特征选择 局部保持投影 嵌入学习 l_(2 0)范数 无参迭代算法
在线阅读 下载PDF
基于正交邻域保持嵌入特征约简的故障诊断模型 被引量:24
3
作者 李锋 汤宝平 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期621-627,共7页
提出一种基于正交邻域保持嵌入(orthogonal neighborhood preserving embedding,ONPE)特征约简的故障诊断模型。首先将原振动信号经验模式分解(empirical mode decomposition,EMD)并构造Shannon熵得到高维特征向量,再利用ONPE将高维特... 提出一种基于正交邻域保持嵌入(orthogonal neighborhood preserving embedding,ONPE)特征约简的故障诊断模型。首先将原振动信号经验模式分解(empirical mode decomposition,EMD)并构造Shannon熵得到高维特征向量,再利用ONPE将高维特征向量约简为低维特征向量,并输入到最近邻分类器(k-nearest neighbors classifier,KNNC)中进行故障识别。本模型充分利用了EMD分解在故障特征提取、ONPE在信息压缩和KNNC在分类决策方面的优势,实现了旋转机械故障特征提取到故障诊断的全程自动化,并提高了诊断精度,为旋转机械故障诊断提供了一种新的模型分析方法。一个滚动轴承故障诊断实例验证了该模型的有效性。 展开更多
关键词 邻域保持嵌入 流形学习 特征约简 最近邻分类器 经验模式分解 故障诊断
在线阅读 下载PDF
基于监督正交局部保持映射的植物叶片图像分类方法 被引量:15
4
作者 张善文 张传雷 程雷 《农业工程学报》 EI CAS CSCD 北大核心 2013年第5期125-131,共7页
针对传统的线性分类方法不能有效处理复杂、多变和非线性的植物叶片图像,在局部保持映射算法的基础上,提出了一种监督正交局部保持映射算法,并应用于基于植物叶片图像分类中。该算法首先利用Warshall算法计算样本的类别矩阵,在此基础上... 针对传统的线性分类方法不能有效处理复杂、多变和非线性的植物叶片图像,在局部保持映射算法的基础上,提出了一种监督正交局部保持映射算法,并应用于基于植物叶片图像分类中。该算法首先利用Warshall算法计算样本的类别矩阵,在此基础上充分利用样本的局部信息和类别信息构造类间散度矩阵和类内散度矩阵,使得维数约简后,在低维子空间同类样本之间的距离变小,而不同类样本之间的距离增大,由此提高了该算法的分类能力。最后,利用K-最近邻分类器进行植物分类。与经典的监督子空间维数约简方法相比,该方法在构建类内和类间散度矩阵时不需要判别数据的类别信息,能够提高算法的分类性能。在公开植物叶片图像数据库上进行了一系列植物叶片分类试验,平均正确识别率高达95.92%。试验结果表明了该算法在植物分类中的可行性。 展开更多
关键词 图像处理 算法 试验 植物叶片分类 局部保持映射 监督局部保持映射
在线阅读 下载PDF
有监督不相关正交局部保持映射故障辨识 被引量:15
5
作者 李锋 王家序 杨荣松 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第5期1113-1120,共8页
提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向... 提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向量机中进行故障模式辨识。时频域特征融集可较全面准确地反映旋转机械的故障特征;SUOLPP同时利用流形局部几何结构和类标签来设计相似加权矩阵,并使输出基向量统计不相关和相互正交,提高了故障辨识精度。深沟球轴承故障诊断和空间轴承寿命状态辨识实例验证了该方法的有效性。 展开更多
关键词 时频域特征集 有监督不相关局部保持映射 维数化简 流形学习 故障辨识
在线阅读 下载PDF
基于核的正交局部保持投影的人脸识别 被引量:15
6
作者 金一 阮秋琦 《电子与信息学报》 EI CSCD 北大核心 2009年第2期283-287,共5页
针对发掘人脸图像中的高维非线性结构,本文将加核及向量间相互正交两种思想同时引入局部保留投影算法中,提出了一种新的基于核的正交局部保持投影(Kernel based Orthogonal Locality Preserving Projections,KOLPP)的非线性子空间人脸... 针对发掘人脸图像中的高维非线性结构,本文将加核及向量间相互正交两种思想同时引入局部保留投影算法中,提出了一种新的基于核的正交局部保持投影(Kernel based Orthogonal Locality Preserving Projections,KOLPP)的非线性子空间人脸识别算法并给出了其推导过程。该算法首先利用核的方法提取人脸图像中的非线性信息,并将其投影在一个高维非线性空间,在保证各向量正交的同时,通过局部保持投影算法做一线性映射,从而更好地提取人脸非线性局部邻域结构特征。在ORL和Yale人脸库上的试验证明了该文所提算法的有效性。 展开更多
关键词 人脸识别 特征提取 核方法 局部保持投影
在线阅读 下载PDF
正交全局-局部判别映射应用于植物叶片分类 被引量:7
7
作者 张善文 巨春飞 《农业工程学报》 EI CAS CSCD 北大核心 2010年第10期162-166,共5页
提出了一种正交全局-局部判别映射的维数约简方法,并应用于植物叶片分类中。对于给定点的邻域点集,首先建立能够描述数据点之间关系的权重矩阵;然后,充分利用数据的类别信息和局部信息来构建类间散度矩阵和局部结构矩阵,使得映射后类内... 提出了一种正交全局-局部判别映射的维数约简方法,并应用于植物叶片分类中。对于给定点的邻域点集,首先建立能够描述数据点之间关系的权重矩阵;然后,充分利用数据的类别信息和局部信息来构建类间散度矩阵和局部结构矩阵,使得映射后类内数据点之间的距离减小,而类间数据点之间的距离增大,这一性质有利于数据分类;最后,构造正交优化目标函数,通过Lagrange数乘法求解该目标函数。植物叶片图像分类的试验结果表明,该方法是有效、可行的。 展开更多
关键词 流形学习 植物叶片分类 全局-局部判别映射
在线阅读 下载PDF
基于随机子空间-正交局部保持投影的支持向量机 被引量:3
8
作者 王雪松 高阳 程玉虎 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1746-1750,共5页
针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各... 针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各基SVM分类器的样本进行特征提取,实现维数约简;然后,利用降维后的样本对各基SVM分类器进行训练;采用贝叶斯求和准则将各基SVM的分类结果进行融合以得到最终的分类结果.典型人脸数据库识别结果验证了本方法的可行性和有效性. 展开更多
关键词 随机子空间 局部保持投影 支持向量机 特征提取
在线阅读 下载PDF
直接无监督正交局部保持特征提取算法 被引量:2
9
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2012年第3期100-105,共6页
基于局部保持投影发展出的一系列特征提取算法,在应用于人脸识别等高维小样本问题时,均需先采用PCA算法对高维样本降维后才能应用,故此以无监督鉴别分析算法为理论基础,提出了一种直接无监督正交局部保持算法。该算法利用拉普拉斯矩阵... 基于局部保持投影发展出的一系列特征提取算法,在应用于人脸识别等高维小样本问题时,均需先采用PCA算法对高维样本降维后才能应用,故此以无监督鉴别分析算法为理论基础,提出了一种直接无监督正交局部保持算法。该算法利用拉普拉斯矩阵的性质进行相应的矩阵分解,可直接从高维样本的原始空间中提取投影矩阵,因而无需先采用PCA降维处理,且解决了无监督鉴别分析算法的小样本问题。为了进一步提高算法的识别性能,给出了基于QR分解的正交投影矩阵的求解方法。人脸库和掌纹库上的实验结果表明了所提算法的有效性。 展开更多
关键词 局部保持投影 无监督鉴别分析 直接无监督局部保持投影算法 拉普拉斯矩阵
在线阅读 下载PDF
基于正交局部保持映射的转子故障诊断方法 被引量:2
10
作者 孙斌 刘立远 雷伟 《中国机械工程》 EI CAS CSCD 北大核心 2014年第16期2219-2224,共6页
为了改善故障模式识别的分类性能,提出了一种基于正交局部保持映射算法的多流形特征提取方法。对于高维的非线性数据可以有效地提取低维流形特征向量,并且不会改变数据的内在属性。利用转子的振动信号构造一个高维多征兆矩阵,然后在应... 为了改善故障模式识别的分类性能,提出了一种基于正交局部保持映射算法的多流形特征提取方法。对于高维的非线性数据可以有效地提取低维流形特征向量,并且不会改变数据的内在属性。利用转子的振动信号构造一个高维多征兆矩阵,然后在应用正交局部保持映射将这个高维矩阵进行降维,提取低维特征向量矩阵,映射在可视空间里,从而可以有效地达到故障分类的效果,提高故障诊断的准确率。最后通过实验和数据降维仿真证明了正交局部保持映射算法的有效性和可行性。 展开更多
关键词 模式识别 局部保持映射 特征提取 故障诊断
在线阅读 下载PDF
基于极小准则的完备正交判别局部保持算法 被引量:1
11
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2011年第3期145-150,共6页
以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个... 以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个基于极小准则的目标函数,该目标函数通过投影到总体散度矩阵的非零空间中有效地解决小样本问题,最后给出了该算法基于QR分解的正交投影矩阵的求解方法。人脸库上的实验结果表明了所提方法的有效性。 展开更多
关键词 完备判别局部保持投影算法 散度矩阵 无监督判别投影算法 目标函数 非零空间
在线阅读 下载PDF
基于半监督邻域自适应正交局部保持映射的故障诊断 被引量:7
12
作者 杨乐 《机械强度》 CAS CSCD 北大核心 2018年第4期785-789,共5页
针对正交局部保持映射(OLPP)应用于故障诊断存在识别精度不高的问题,提出了基于半监督邻域自适应正交局部保持映射(SSNA-OLPP)维数约简的故障诊断新方法。该方法首先基于局部特征尺度分解(LCD)和时域、频域特征构造能全面表征故障的特征... 针对正交局部保持映射(OLPP)应用于故障诊断存在识别精度不高的问题,提出了基于半监督邻域自适应正交局部保持映射(SSNA-OLPP)维数约简的故障诊断新方法。该方法首先基于局部特征尺度分解(LCD)和时域、频域特征构造能全面表征故障的特征集,然后利用SSNA-OLPP对特征集进行降维以获得辨识度更高的低维特征,最后将低维特征输入SVM进行故障识别。SSNA-OLPP在局部聚集系数的指导下能够自适应的调整邻域参数,同时还利用部分样本的类别标签信息调整原始特征空间中样本间的权值矩阵,能够获得更有效的低维流形,提高了故障诊断的精度。滚动轴承故障诊断实验验证了该方法的有效性。 展开更多
关键词 故障诊断 维数约简 局部保持映射 滚动轴承
在线阅读 下载PDF
正交及不相关边界邻域保持嵌入的人脸识别 被引量:1
13
作者 陈达遥 陈秀宏 《计算机应用》 CSCD 北大核心 2013年第11期3097-3101,共5页
邻域保持嵌入(NPE)算法本质上仍是一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出两种有监督流形学习方法:正交边界邻域保持嵌入(OMNPE)和不相关边界邻域保持嵌入(UMNPE)。首先构造类内和类间邻接图,并... 邻域保持嵌入(NPE)算法本质上仍是一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出两种有监督流形学习方法:正交边界邻域保持嵌入(OMNPE)和不相关边界邻域保持嵌入(UMNPE)。首先构造类内和类间邻接图,并定义类内和类间重构误差;然后分别在正交和不相关约束条件下寻找最小化类内重构误差同时最大化类间重构误差的投影向量;将训练样本和测试样本分别投影到低维子空间中,再利用最近邻分类器进行分类识别。在ORL和Yale人脸库上的实验结果表明,与线性判别分析(LDA)、边界Fisher分析(MFA)等子空间人脸识别算法相比,所提算法的平均识别率提高了0.5%-3%,验证了算法的有效性。 展开更多
关键词 降维 流形学习 人脸识别 邻域保持嵌入 不相关
在线阅读 下载PDF
基于Log-Gabor和正交局部保持投影的人耳识别方法 被引量:1
14
作者 雷松泽 齐敏 《计算机应用与软件》 CSCD 北大核心 2014年第10期172-175,共4页
针对人耳角度变化引起识别率下降的问题,提出一种结合Log-Gabor滤波和正交局部保持投影(OLPP)的人耳识别方法。首先采用Log-Gabor对图像进行滤波来提取多尺度多方向的人耳纹理特征;然后在局部保持投影的原始优化问题中增加正交约束条件... 针对人耳角度变化引起识别率下降的问题,提出一种结合Log-Gabor滤波和正交局部保持投影(OLPP)的人耳识别方法。首先采用Log-Gabor对图像进行滤波来提取多尺度多方向的人耳纹理特征;然后在局部保持投影的原始优化问题中增加正交约束条件,迭代计算出一组具有正交性最优映射向量,约简了丰富的Log-Gabor特征,并保留了人耳非线性流形子空间与距离有关的结构信息和重构样本;最后用最小欧氏距离分类器进行分类识别。对比相关的方法,该方法提高了姿态人耳的识别率。实验结果表明该方法能良好地表征姿态人耳,对角度变化具有很好的鲁棒性。 展开更多
关键词 LOG-GABOR滤波器 人耳识别 局部保持投影
在线阅读 下载PDF
正则化最小二乘的正交局部保持判别投影的人脸识别
15
作者 李勇周 罗大庸 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1847-1850,共4页
提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸... 提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸子空间的投影,然后使用最小二乘法解出投影子空间,最后将子空间的基向量正交化.在标准人脸数据库上的试验证明了这种识别方法的正确和有效. 展开更多
关键词 人脸识别 则化最小二乘 局部保持判别投影
在线阅读 下载PDF
一种正交局部鉴别嵌入的人脸识别算法
16
作者 黄蓓 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期1208-1211,共4页
为了解决局部鉴别嵌入(LDE)算法的高维小样本泛化能力弱和分解致密矩阵计算量较大的问题,提出了一种基于谱回归的正交局部鉴别嵌入算法(SR-OLDE),采用谱回归理论与正交化技术相结合的方法,将投影函数的求解转化为回归问题的求解.该算法... 为了解决局部鉴别嵌入(LDE)算法的高维小样本泛化能力弱和分解致密矩阵计算量较大的问题,提出了一种基于谱回归的正交局部鉴别嵌入算法(SR-OLDE),采用谱回归理论与正交化技术相结合的方法,将投影函数的求解转化为回归问题的求解.该算法首先计算训练样本的特征向量;然后通过回归方法计算投影向量,得到测试数据集,从而将n×n维的致密矩阵的特征分解转化为m×m维矩阵的特征分解,n,m分别为人脸特征矩阵维数和人脸样本数;最后对投影向量进行Gram-Schmidt正交化,得到正交的投影矩阵,从而可准确估计高维数据的内在维数,提高了样本的泛化能力.实验结果表明,该算法在降低人脸特征矩阵维数和提高人脸识别率的同时,缩短了计算时间. 展开更多
关键词 人脸识别 局部鉴别嵌入 谱回归
在线阅读 下载PDF
基于正交邻域保持嵌入与多核相关向量机的滚动轴承早期故障诊断 被引量:13
17
作者 陈法法 杨晓青 +2 位作者 陈保家 程珩 肖文荣 《计算机集成制造系统》 EI CSCD 北大核心 2018年第8期1946-1954,共9页
针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对... 针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对多域特征向量进行约简降维处理,获取最能反映滚动轴承早期故障运行状态变化的低维敏感特征,随后将获取的低维敏感特征输入给多核RVM进行早期故障模式的分类辨识。通过分析滚动轴承早期故障的模拟实验数据表明,该方法对高维复杂的非线性早期故障特征具有良好的约简降维性能,而且比单一核函数RVM具有更好的诊断精度。 展开更多
关键词 邻域保持嵌入 多核相关向量机 滚动轴承 早期故障 故障诊断
在线阅读 下载PDF
基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法 被引量:2
18
作者 刘韵佳 赵荣珍 王雪冬 《中国机械工程》 EI CAS CSCD 北大核心 2017年第21期2552-2556,共5页
针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维... 针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维特征集向低维投影,使降维后类内散度最小化及类间分离度最大化,最后将降维后得到的低维特征集输入K近邻分类器进行模式识别。通过双跨转子试验台的故障特征数据集进行验证,结果表明该方法能够有效地解决转子故障特征集的降维问题。 展开更多
关键词 故障诊断 数据降维 SCHUR分解 邻域保持嵌入算法
在线阅读 下载PDF
求解全局优化问题的混合自适应正交遗传算法 被引量:43
19
作者 江中央 蔡自兴 王勇 《软件学报》 EI CSCD 北大核心 2010年第6期1296-1307,共12页
提出了一种基于正交实验设计的混合自适应正交遗传算法(hybrid self-adaptive orthogonal genetic algorithm,简称HSOGA)以求解全局优化问题,此算法利用正交实验设计方法设计交叉算子,并提出一种自适应正交交叉算子.该自适应正交交叉算... 提出了一种基于正交实验设计的混合自适应正交遗传算法(hybrid self-adaptive orthogonal genetic algorithm,简称HSOGA)以求解全局优化问题,此算法利用正交实验设计方法设计交叉算子,并提出一种自适应正交交叉算子.该自适应正交交叉算子根据父代个体的相似度自适应地调整正交表的因素个数和对父代个体进行因素分割的位置,生成具有代表性的子代个体,以更好地搜索空间.此外,新算法利用自适应正交交叉算子生成均匀分布的初始种群,以保证初始群体的多样性.同时引入了局部搜索策略以提高算法局部搜索能力和收敛速度.通过14个高维的Benchmark函数验证了算法的通用性和有效性. 展开更多
关键词 遗传算法 局部搜索 全局优化 实验设计
在线阅读 下载PDF
用于全局优化的混合正交遗传算法 被引量:13
20
作者 江中央 蔡自兴 王勇 《计算机工程》 CAS CSCD 北大核心 2009年第4期204-206,209,共4页
为提高正交遗传算法收敛速度和搜索精度,在正交遗传算法的基础上引入局部搜索策略,提出一种新的聚类局部搜索算子。利用正交算子初始化种群,保证初始群体分布的均匀性和多样性。通过正交算子在全局范围内进行全局搜索,使算法能在全局范... 为提高正交遗传算法收敛速度和搜索精度,在正交遗传算法的基础上引入局部搜索策略,提出一种新的聚类局部搜索算子。利用正交算子初始化种群,保证初始群体分布的均匀性和多样性。通过正交算子在全局范围内进行全局搜索,使算法能在全局范围内收敛。采用聚类局部搜索算子对群体进行局部搜索,以增强算法的收敛速度和搜索精度。对7个高维的Benchmark函数进行测试,仿真实验结果表明,与其他算法相比,该算法具有更好的搜索精度、收敛速度和全局寻优的能力。 展开更多
关键词 遗传算法 局部搜索 全局优化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部