期刊文献+
共找到1,090篇文章
< 1 2 55 >
每页显示 20 50 100
自适应混合粒子群优化DMC及其在脱硫系统中的应用
1
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于自适应粒子群的机械臂模糊计算力矩控制
2
作者 李嘉辉 杨建中 +2 位作者 黄思 吴浩天 张青 《组合机床与自动化加工技术》 北大核心 2025年第1期150-154,159,共6页
针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算... 针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算力矩控制(CTC)中PID参数的模糊控制器。进一步提出APSO-FCTC方法,通过基于动态适应度数组的自适应粒子群算法实时优化模糊集合的端点值。通过仿真验证了所提出的APSO-FCTC方法在传统CTC方法的控制参数不能适应系统变化时轨迹跟踪的优越性和抗干扰性,且优于单独使用模糊或自适应粒子群的方法。 展开更多
关键词 机械臂 计算力矩 模糊控制 自适应粒子
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
3
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
4
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
5
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:2
6
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
7
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于环境识别策略的多目标自适应粒子群 算法及应用
8
作者 武保同 舒若琦 陈志祥 《计算机应用研究》 北大核心 2025年第10期2980-2988,共9页
针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策... 针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策略,避免算法在搜索过程中过快收敛;提出基于环境识别的自适应学习算子和自适应跳跃协作算子,分别通过自识别解空间内种群多样性程度和粒子小生境内拥挤度信息实现粒子间信息的交互和学习。通过多组基准函数的仿真实验进行比较,结果表明算法的搜索能力和优化精度都得到明显改善。最后,通过一个带有NP-hard性质的实际多阶段生产案例验证了算法的实用性。 展开更多
关键词 粒子算法 进化计算 自适应学习 多目标优化 多阶段生产问题
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:3
9
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
10
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
11
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
12
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
基于粒子群优化的旋冲钻进系统模糊PID控制 被引量:2
13
作者 朱勇 曹凯 +3 位作者 丁陈林 赵阳 高强 王节涛 《液压与气动》 北大核心 2024年第11期53-63,共11页
旋冲钻进系统作为钻机的核心传动系统,其动态性能直接影响整机装备的运行可靠性。针对常规PID控制器和模糊PID控制器存在参数设定主观性较大、整定较复杂,会导致旋冲钻进系统在复杂地层钻进过程中给进速度和转速控制精度不高的问题,探... 旋冲钻进系统作为钻机的核心传动系统,其动态性能直接影响整机装备的运行可靠性。针对常规PID控制器和模糊PID控制器存在参数设定主观性较大、整定较复杂,会导致旋冲钻进系统在复杂地层钻进过程中给进速度和转速控制精度不高的问题,探究了基于粒子群优化的模糊PID控制方法。基于钻机工作机理,设计了旋冲钻进液压传动系统;利用AMESim建立旋冲钻进系统仿真模型,对模型的合理性进行了验证;采用AMESim-Simulink-ADAMS联合仿真平台建立了基于粒子群优化的模糊PID控制方法的系统耦合模型。结果表明:不同载荷下,相较于常规PID控制和模糊PID控制,基于粒子群优化的模糊PID控制能够有效降低旋冲钻进系统超调量,缩短调整时间,减小稳态误差,对系统起步阶段的振荡现象有一定抑制作用,具有更优的控制精度和稳定性。 展开更多
关键词 旋冲钻进系统 模糊PID控制 粒子优化 联合仿真
在线阅读 下载PDF
基于自适应遗传粒子群优化模糊神经网络的疲劳驾驶预测模型 被引量:7
14
作者 孙伟 张小瑞 +2 位作者 唐慧强 夏旻 张为公 《汽车工程》 EI CSCD 北大核心 2013年第3期219-223,228,共6页
为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟... 为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟实验获得的数据,对该模型进行了训练和测试,并将结果与传统的粒子群、遗传和反向传播算法进行对比。结果表明,该模型不仅精简了网络结构,缩短了训练时间,而且减小了全局误差,提高了预测精度。 展开更多
关键词 疲劳驾驶 减法聚类 自适应遗传粒子优化 模糊神经网络
在线阅读 下载PDF
基于模糊c-means与自适应粒子群优化的模糊聚类算法 被引量:9
15
作者 耿宗科 王长宾 张振国 《计算机科学》 CSCD 北大核心 2016年第8期267-272,共6页
已有的粒子群模糊聚类算法需要设置粒子群参数并且收敛速度较慢,对此提出一种基于改进粒子群与模糊c-means的模糊聚类算法。首先,使用模糊c-means算法生成一组起始解,提高粒子群演化的方向性;然后,使用改进的自适应粒子群优化方法对数... 已有的粒子群模糊聚类算法需要设置粒子群参数并且收敛速度较慢,对此提出一种基于改进粒子群与模糊c-means的模糊聚类算法。首先,使用模糊c-means算法生成一组起始解,提高粒子群演化的方向性;然后,使用改进的自适应粒子群优化方法对数据进行训练与优化,训练过程中自适应地调节粒子群参数;最终,采用模糊c-means算法进行模糊聚类过程。对比实验结果表明,所提方法大幅度提高了计算速度,并获得了较高的聚类性能。 展开更多
关键词 粒子优化 参数调节 模糊聚类算法 自适应调节 收敛速度
在线阅读 下载PDF
基于灰色模型粒子群优化算法的自适应神经模糊推理系统模型的船舶横摇运动预报分析 被引量:10
16
作者 张泽国 尹建川 +1 位作者 胡江强 柳成 《科学技术与工程》 北大核心 2016年第33期124-129,共6页
为了准确高效的预测船舶在波浪中的航行状态以保证人员、货物和船舶的安全,提出了一种基于灰色模型粒子群优化算法的自适应神经模糊推理系统(grey particle swarm optimization-adaptive neural-fuzzy inference system,GPSO-ANFIS)。GP... 为了准确高效的预测船舶在波浪中的航行状态以保证人员、货物和船舶的安全,提出了一种基于灰色模型粒子群优化算法的自适应神经模糊推理系统(grey particle swarm optimization-adaptive neural-fuzzy inference system,GPSO-ANFIS)。GPSO-ANFIS预测模型使用模糊C均值聚类算法对输入样本进行聚类分析,得到模糊规则数量并建立神经模糊推理系统;再使用粒子群优化算法对建立的预测系统进行优化训练,从而得到最优的预测系统模型。其中灰色模型用于横摇数据的预处理,以便削弱横摇状态中的非线性影响因素。最后通过实船"育鲲"轮的横摇数据进行仿真实验。实验结果验证了GPSO-ANFIS模型的实用性和可行性,具有较高的预测精度。并为船舶航行智能化提供了一种有价值的理论依据。 展开更多
关键词 船舶横摇运动 灰色模型 时间序列预测 粒子优化算法 自适应神经模糊推理系统
在线阅读 下载PDF
基于模糊文化算法的自适应粒子群优化 被引量:8
17
作者 罗强 李瑞浴 易东云 《计算机工程与科学》 CSCD 2008年第1期88-92,共5页
为解决粒子群优化中惯性权重的调整机制在具体优化问题中的自适应问题,本文建立了一种全新的基于模糊文化算法的自适应粒子群优化算法;利用模糊规则表示个体粒子在演化过程中获取的经验,经验共享形成群体文化,并利用遗传算法来实现文化... 为解决粒子群优化中惯性权重的调整机制在具体优化问题中的自适应问题,本文建立了一种全新的基于模糊文化算法的自适应粒子群优化算法;利用模糊规则表示个体粒子在演化过程中获取的经验,经验共享形成群体文化,并利用遗传算法来实现文化的进化;通过信念空间中以模糊规则表示的知识建立模糊系统来逼近与实际问题相适应的惯性权重控制器。在测试函数集上的仿真实验对比结果证明,该算法相对于现有算法有优势。 展开更多
关键词 粒子优化 文化算法 模糊知识表示 自适应惯性权重
在线阅读 下载PDF
磁粉离合器自适应权重粒子群优化模糊控制的研究 被引量:7
18
作者 吴晓刚 王旭东 余腾伟 《汽车工程》 EI CSCD 北大核心 2010年第6期510-514,523,共6页
针对传统的模糊控制精度不高、自适应能力有限等问题,为了对车辆起步时磁粉离合器接合过程进行模糊控制,提出一种应用自适应权重粒子群优化算法来优化模糊控制器量化因子的方法。优化的量化因子将根据环境和负载的状况,实时跟踪模糊控... 针对传统的模糊控制精度不高、自适应能力有限等问题,为了对车辆起步时磁粉离合器接合过程进行模糊控制,提出一种应用自适应权重粒子群优化算法来优化模糊控制器量化因子的方法。优化的量化因子将根据环境和负载的状况,实时跟踪模糊控制器参数的变化,从而提高了模糊控制器的鲁棒性和控制精度。仿真结果表明,与传统的模糊控制相比,采用自适应权重粒子群优化的模糊控制算法在降低发动机转速超调量的同时,减小了车辆起步的最大冲击度和离合器接合过程中的滑摩功。 展开更多
关键词 磁粉离合器 粒子优化 模糊控制
在线阅读 下载PDF
基于粒子群优化的潜器深度自适应模糊控制 被引量:14
19
作者 彭鹏菲 姜俊 黄亮 《控制工程》 CSCD 北大核心 2017年第2期441-445,共5页
为了克服水下潜器复杂工作环境及非线性沉浮运动的不利因素,提高系统平台的稳定性与自适应能力,提出了一种基于粒子群优化的水下潜器深度自适应模糊控制方法。该方法采用基于粒子群优化的搜索方法,对模糊控制器的控制规则修正因子进行... 为了克服水下潜器复杂工作环境及非线性沉浮运动的不利因素,提高系统平台的稳定性与自适应能力,提出了一种基于粒子群优化的水下潜器深度自适应模糊控制方法。该方法采用基于粒子群优化的搜索方法,对模糊控制器的控制规则修正因子进行动态优化调整,同时结合基于误差反向传播的多层前向神经网络对隶属函数参数进行自适应修正。这种将粒子群优化与神经网络相结合的模糊控制方法具有较快的收敛速度,能够有效的实现系统平台水下运动状态的自适应调整,并避免了局部极小值问题。仿真实验结果表明:该方法实际应用中的控制变量超调量及稳态误差均优于传统的自适应模糊控制过程,可使水下潜器具备更好的稳定性能,应用前景广阔。 展开更多
关键词 模糊控制 修正因子 粒子优化 多层前向神经网络
在线阅读 下载PDF
基于多目标粒子群与模糊控制的AMT自适应换挡规律研究 被引量:8
20
作者 杜娟 杨振东 +1 位作者 黄建刚 刘晓东 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期209-222,共14页
搭载自动机械变速器(AMT)的车辆,其换挡规律是提升动力性与经济性的关键.本文以3挡AMT纯电动城市客车为研究对象,基于多目标粒子群算法(MOPSO)对不同加速踏板开度下的换挡车速进行优化,建立了兼顾动力性与经济性的双参数MOPSO换挡规律,... 搭载自动机械变速器(AMT)的车辆,其换挡规律是提升动力性与经济性的关键.本文以3挡AMT纯电动城市客车为研究对象,基于多目标粒子群算法(MOPSO)对不同加速踏板开度下的换挡车速进行优化,建立了兼顾动力性与经济性的双参数MOPSO换挡规律,并构建了以车辆载荷与加速度变化为输入,车速调整量为输出的模糊控制器对MOPSO规律进行自适应调整,得到了自适应换挡规律Fuzzy-MOPSO.最后,对Fuzzy-MOPSO规律开展了动力性与经济性验证,并与其他换挡规律进行比较.结果表明,Fuzzy-MOPSO规律的加速性能比经济性规律提升了15.3%,其动力性能比MOPSO规律更优越.经济性方面,在4段实际道路工况下,Fuzzy-MOPSO规律的经济性比动力性规律分别提升了6.08%、7.28%、6.88%、5.63%,比MOPSO规律更具节能潜力.此外,Fuzzy-MOPSO规律在实际道路工况下的换挡频率与MOPSO规律相当,节能的同时能够有效抑制频繁换挡,提升传动系统的寿命. 展开更多
关键词 多目标粒子优化 模糊控制 AMT纯电动城市客车 自适应换挡规律
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部