期刊文献+
共找到1,173篇文章
< 1 2 59 >
每页显示 20 50 100
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
1
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向基函数神经网络 混合优化算法 早熟判据 PID控制
在线阅读 下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
2
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子群优化算法
在线阅读 下载PDF
基于模糊径向基函数神经网络的航空煤油干点估计 被引量:1
3
作者 刘士荣 郑瑜 +1 位作者 骆昕 葛映辉 《机电工程》 CAS 2000年第3期73-76,共4页
研究以模糊聚类和径向基函数网络结合的模糊径向基函数网络FRBFN,并用主元分析对高维输入变量进 行预处理,降低了模型的输入变量维数,进而构造基于PCA-FRBFN的估计模型。这一方法通过对加氢裂化装置分 馏塔航空煤油干... 研究以模糊聚类和径向基函数网络结合的模糊径向基函数网络FRBFN,并用主元分析对高维输入变量进 行预处理,降低了模型的输入变量维数,进而构造基于PCA-FRBFN的估计模型。这一方法通过对加氢裂化装置分 馏塔航空煤油干点估计得到验证。 展开更多
关键词 航空煤油 干点估计 径向函数 神经网络
在线阅读 下载PDF
球磨机对象控制中模糊径向基函数神经网络的PID控制分析 被引量:4
4
作者 朱丽娟 《现代电子技术》 北大核心 2015年第24期56-58,61,共4页
结合球磨机制粉系统的特点,提出球磨机对象控制中模糊径向基函数神经网络PID控制算法,结合混合优化算法,在混沌粒子群优化的同时实现粗线调,并应用BP算法做好在线细调,进而得到PID控制的最佳参数。通过Matla对算法进行仿真,结果表明,系... 结合球磨机制粉系统的特点,提出球磨机对象控制中模糊径向基函数神经网络PID控制算法,结合混合优化算法,在混沌粒子群优化的同时实现粗线调,并应用BP算法做好在线细调,进而得到PID控制的最佳参数。通过Matla对算法进行仿真,结果表明,系统不仅有效解决了球磨机复杂对象的控制问题,同时也实现了算法的快速收敛,并有较快的跟踪速度以及较小的超调,解耦较好,适应性较强。 展开更多
关键词 模糊径向函数 神经网络 球磨机 PID控制
在线阅读 下载PDF
单级齿轮系统混沌运动及其径向基函数神经网络控制
5
作者 王瑞邦 田亚平 +3 位作者 张峰 卢杭 王建勤 杨江辉 《噪声与振动控制》 北大核心 2025年第4期32-38,共7页
为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré... 为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré截面上点的欧式距离为输入,构建径向基函数神经网络控制器,使用改进局部搜索能力和寻优速度的引力搜索算法优化径向基函数神经网络控制器的参数,实现系统混沌运动向周期运动的有效控制。结果表明径向基函数神经网络控制方法不受系统的Jacobian矩阵和流形的限制更具有工程普适性。 展开更多
关键词 振动与波 单级齿轮传动系统 混沌控制 径向函数神经网络 万有引力搜索算法
在线阅读 下载PDF
核反应堆冷却剂系统故障诊断动态模糊径向基神经网络模型
6
作者 朱佳浩 戴滔 +1 位作者 隋阳 李枭瀚 《科学技术与工程》 北大核心 2025年第11期4567-4573,共7页
针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neura... 针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neural network, DFRBFNN)模型。首先,根据RCS的故障类型和样本数据,确定DFRBFNN模型的初始结构;然后,应用径向基神经网络方法,构建了RCS故障诊断DFRBFNN初始模型,应用随机初始化方法,对DFRBFNN初始模型的去模糊层到输出层的连接权重进行初始化处理;最后,应用误差下降率法,修正DFRBFNN初始模型的结构和参数,构建了RCS故障诊断DFRBFNN模型。应用所建立的模型对冷却剂丧失、失流和蒸汽发生器管道破裂事故进行诊断,并与传统的故障诊断模型进行对比,验证了本文所建立模型的有效性。研究表明,所构建的核电厂RCS故障诊断DFRBFNN模型能够在不确定环境下准确地诊断RCS的故障。 展开更多
关键词 核电厂 核反应堆冷却剂系统 故障诊断 动态模糊径向神经网络模型
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
7
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子群优化算法 参数预测
在线阅读 下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
8
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向函数神经网络算法 高频转阀 液压马达 转速控制
在线阅读 下载PDF
基于多变量相空间重构和径向基函数神经网络的综合能源系统电冷热超短期负荷预测 被引量:14
9
作者 窦真兰 张春雁 +2 位作者 许一洲 高煜焜 刘皓明 《电网技术》 EI CSCD 北大核心 2024年第1期121-128,共8页
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦... 为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。 展开更多
关键词 电冷热负荷预测 综合能源系统 多变量相空间重构 径向函数神经网络
在线阅读 下载PDF
基于神经网络的无线电能传输自抗扰控制 被引量:1
10
作者 宋贝多 程志江 +1 位作者 刘尊祝 杨涵棣 《现代电子技术》 北大核心 2025年第6期85-90,共6页
为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控... 为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控制器设计;其次,利用RBF神经网络的在线学习能力动态优化ADRC控制器中的可调参数,以实现对系统输出电压的精确控制;最后,搭建基于RBF-ADRC的无线电能传输装置,比较RBF-ADRC和ADRC控制器的控制效果。实验结果表明,与传统ADRC控制器相比,RBF-ADRC控制器不仅解决了参数调整困难的问题,还显著提升了系统的响应速度和控制性能,验证了RBF-ADRC控制器的有效性,实现了无超调的稳定输出,并且过渡时间更短。 展开更多
关键词 无线电能传输系统 自抗扰控制 RBF神经网络 双边LCC型拓扑结构 恒压输出 径向函数
在线阅读 下载PDF
基于GWO-RBF神经网络的城市机动车能耗预测
11
作者 李四洋 张瑞 +2 位作者 李雅男 陈贺鹏 陈艳艳 《科学技术与工程》 北大核心 2025年第8期3480-3486,共7页
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net... 在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。 展开更多
关键词 机动车 能耗 径向函数神经网络(RBFNN) 灰狼算法(GWO)
在线阅读 下载PDF
基于权重自适应更新径向基函数神经网络的水下游动机械臂镇定控制 被引量:2
12
作者 孙非 曹宇赫 +1 位作者 崔特 任超 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期1-8,共8页
水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑... 水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑战。针对这一问题,本文基于反馈线性化和自适应径向基函数神经网络(radial basis function neural network,RBFNN),设计了一种动力学控制方案以实现USM的镇定控制。首先,介绍了USM平台结构,基于Lagrange方程给出了USM的动力学模型,并推导了USM的矢量推力系统模型。然后,设计了基于反馈线性化和RBFNN的动力学控制器,并通过反步法自适应更新RBFNN的权重。其中,权重自适应更新RBFNN用于实时估计系统未建模部分、参数误差以及外部扰动,从而对动力学控制器进行补偿。此外,为了将动力学控制器提供的广义力和力矩转换成各个执行器的控制输入,给出了推力分配策略。最后,进行了湖泊实验,分别对USM的I构型和C构型镇定控制,文章所提出的控制方案在两种构型下的稳态误差均小于0.08 m和10°,验证了所提出的USM六自由度镇定控制器的有效性。 展开更多
关键词 水下游动机械臂 动力学建模 反馈线性化 径向函数神经网络
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
13
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
14
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于径向基函数神经网络和模糊积分融合的电网分区故障诊断 被引量:53
15
作者 石东源 熊国江 +1 位作者 陈金富 李银红 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期562-569,共8页
为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的... 为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。 展开更多
关键词 大电网 电网分区 故障诊断 径向函数神经网络 模糊积分
在线阅读 下载PDF
基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法 被引量:41
16
作者 毕天姝 倪以信 +1 位作者 吴复立 杨奇逊 《中国电机工程学报》 EI CSCD 北大核心 2005年第14期12-18,共7页
该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变... 该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变为等值模糊控制系统中用语言表述的规则。在此基础上,针对电网结构发生变化或扩展情况,提出了RBF神经网络的局部重新训练新算法。提出的基于RBF神经网络和等值模糊控制系统的故障诊断方法在IEEE118母线系统中进行了仿真试验,结果表明:基于RBF网络与等值模糊系统的故障诊断方法诊断知识易于理解,诊断过程透明,并能适应电网拓扑结构发生变化或扩展的情况,效果理想。 展开更多
关键词 电力系统 故障诊断 径向函数神经网络 模糊控制系统 重新训练算法
在线阅读 下载PDF
基于径向基函数神经网络的电网模糊元胞故障诊断 被引量:54
17
作者 熊国江 石东源 +1 位作者 朱林 陈祥文 《电力系统自动化》 EI CSCD 北大核心 2014年第5期59-65,共7页
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路... 提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。 展开更多
关键词 电力系统 元胞故障诊断 径向函数神经网络 模糊矢状图 可移植性
在线阅读 下载PDF
采用免疫进化算法优化设计径向基函数模糊神经网络控制器 被引量:10
18
作者 左兴权 李士勇 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第4期521-525,共5页
基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成... 基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成初始群体;然后模拟生物适应性免疫应答过程,通过扩展操作在群体中较优秀个体的小邻域内进行局部搜索,同时利用突变操作在较差个体的大邻域内搜索;最后将设计的控制器用于控制倒立摆系统,仿真结果验证了该控制器的有效性. 展开更多
关键词 人工免疫系统 优化计算 径向函数模糊神经网络 模糊控制
在线阅读 下载PDF
基于神经网络的船测稀疏海域地形反演改进算法
19
作者 欧阳明达 翟振和 +3 位作者 牛向华 管斌 张鹏飞 付永健 《中国惯性技术学报》 北大核心 2025年第1期64-69,共6页
针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,... 针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,所建立神经网络模型用于长波重力异常格网构建,达到提高地形反演精度的目的。为验证改进算法有效性,设计7种不同组合模式,将南中国海某海域作为研究对象,对比形成最优方案,结果表明,在船测稀疏海域,改进方案相比重力地质法反演精度提高40%以上。 展开更多
关键词 重力地质法 径向函数神经网络算法 重力异常 海底地形
在线阅读 下载PDF
模糊子空间聚类的径向基函数神经网络建模 被引量:4
20
作者 张江滨 邓赵红 王士同 《计算机科学与探索》 CSCD 北大核心 2015年第12期1513-1522,共10页
传统径向基函数(radial basis function,RBF)神经网络模型在处理噪声环境下的数据时,会因缺乏去除噪音特征的机制而使得受训模型的泛化性能下降。针对此缺陷,根据模糊子空间聚类(fuzzy subspace clustering,FSC)算法的子空间特性,为RBF... 传统径向基函数(radial basis function,RBF)神经网络模型在处理噪声环境下的数据时,会因缺乏去除噪音特征的机制而使得受训模型的泛化性能下降。针对此缺陷,根据模糊子空间聚类(fuzzy subspace clustering,FSC)算法的子空间特性,为RBF神经网络添加特征抽取机制,提出了一种模糊子空间聚类RBF神经网络建模新方法(RBF neural network modeling using fuzzy subspace clustering,FSC-RBF-NN)。与传统RBF神经网络建模方法相比,FSC-RBF-NN方法可根据FSC的子空间特性和特征抽取机制,为不同的隐含层节点选取不同的特征子空间。当训练数据中含有大量噪音特征时,FSC-RBF-NN方法可通过特征抽取机制去除噪音特征,只保留对建模有积极作用的特征,使模型能保持良好的泛化性能。模拟和真实数据集上的实验结果亦验证了FSC-RBF-NN方法在噪声环境下具有更好的鲁棒性。 展开更多
关键词 鲁棒性 径向函数(RBF) RBF神经网络 模糊子空间聚类 Ε-不敏感损失函数
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部