研究提出一种模糊双向最大间距准则(fuzzy bidirectional maximum margin criterion,FBMMC)特征提取方法,并将其用于人脸识别。在FBMMC中,首先通过引入原始训练样本集的模糊隶属度矩阵,定义了面向图像的行方向模糊离散度矩阵和行方向模...研究提出一种模糊双向最大间距准则(fuzzy bidirectional maximum margin criterion,FBMMC)特征提取方法,并将其用于人脸识别。在FBMMC中,首先通过引入原始训练样本集的模糊隶属度矩阵,定义了面向图像的行方向模糊离散度矩阵和行方向模糊最大间距准则,进一步求得行方向最优投影矩阵;然后,对原始训练样本集中的每一个样本,采用行方向最优投影矩阵进行投影变换,从而得到行方向特征训练样本集。同样地,通过引入行方向特征训练样本集的模糊隶属度矩阵,给出了面向图像的列方向模糊离散度矩阵和列方向模糊最大间距准则的定义,进一步求得列方向最优投影矩阵。FBMMC在得到行、列两个方向的最优投影矩阵后,就可以将原始数据空间的样本数据投影到一个相对低维的特征空间,从而完成对原始样本数据的特征提取。在ORL和Yale人脸数据库上的实验结果表明,文中提出的模糊双向最大间距准则特征提取方法用于人脸识别具有较高的识别率。展开更多
基于最大散度差判别准则提出了一种模糊最大散度差准则,并根据模糊最大散度差准则提出一种聚类方法(fuzzy maximum scatter difference discriminant criterion based clustering algorithm,简称FMSDC).该方法通过迭代优化方法实现聚类...基于最大散度差判别准则提出了一种模糊最大散度差准则,并根据模糊最大散度差准则提出一种聚类方法(fuzzy maximum scatter difference discriminant criterion based clustering algorithm,简称FMSDC).该方法通过迭代优化方法实现聚类的同时还可以实现特征降维.该方法首先在最大散度差判别准则中引入模糊概念;然后通过具体原则设定模糊最大散度差判别准则中的参数η,从而在一定程度上降低了由参数η引起的敏感性;最后分别根据模糊隶属度μik、最优鉴别矢量ω进行聚类和特征降维.实验结果表明,FMSDC方法不但具有基本的聚类功能,而且具有较好的鲁棒性和较强的特征降维能力.展开更多
文摘研究提出一种模糊双向最大间距准则(fuzzy bidirectional maximum margin criterion,FBMMC)特征提取方法,并将其用于人脸识别。在FBMMC中,首先通过引入原始训练样本集的模糊隶属度矩阵,定义了面向图像的行方向模糊离散度矩阵和行方向模糊最大间距准则,进一步求得行方向最优投影矩阵;然后,对原始训练样本集中的每一个样本,采用行方向最优投影矩阵进行投影变换,从而得到行方向特征训练样本集。同样地,通过引入行方向特征训练样本集的模糊隶属度矩阵,给出了面向图像的列方向模糊离散度矩阵和列方向模糊最大间距准则的定义,进一步求得列方向最优投影矩阵。FBMMC在得到行、列两个方向的最优投影矩阵后,就可以将原始数据空间的样本数据投影到一个相对低维的特征空间,从而完成对原始样本数据的特征提取。在ORL和Yale人脸数据库上的实验结果表明,文中提出的模糊双向最大间距准则特征提取方法用于人脸识别具有较高的识别率。
文摘基于最大散度差判别准则提出了一种模糊最大散度差准则,并根据模糊最大散度差准则提出一种聚类方法(fuzzy maximum scatter difference discriminant criterion based clustering algorithm,简称FMSDC).该方法通过迭代优化方法实现聚类的同时还可以实现特征降维.该方法首先在最大散度差判别准则中引入模糊概念;然后通过具体原则设定模糊最大散度差判别准则中的参数η,从而在一定程度上降低了由参数η引起的敏感性;最后分别根据模糊隶属度μik、最优鉴别矢量ω进行聚类和特征降维.实验结果表明,FMSDC方法不但具有基本的聚类功能,而且具有较好的鲁棒性和较强的特征降维能力.