To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric...To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.展开更多
This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideratio...This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.展开更多
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out...Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the s...The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the surrounding rock, a mechanical model was developed for the stability of the roadway support and surrounding rock. Analysis of the bearing capacity of the roof back-wall guard-board and modelling of the equations for the maximum deflection and the maximum compressive stress of the top and side beams of the I-shaped steel support were undertaken. Simultaneously, the model was used to calculate and analyse the stability of the top and side beams of the I-shaped steel support structure and analyse the criteria for their stability. The results provide a reliable theoretical basis for the judgment of the stability of the surrounding rock and support structure. The theoretical evaluation results are consistent with field data. Finally, the key support parameters of the top and side beams of the I-shaped steel support structure and the variation of the maximum deflection and the maximum compressive stress as affected by the influence of the guard-board length were investigated. It is concluded that, as the back-board length increases, the maximum compressive stress in the top beam of the I-shaped steel support increases while the compressive stress in the side beam decreases. The results show that the accuracy of judgment of the stability of a supported retreating roadway is improved, providing guidance for the design of such typical I-shaped steel support and back-board structures.展开更多
基金Project(2017YFC1501100)supported by the National Key R&D Program of ChinaProjects(51809221,51679158)supported by the National Natural Science Foundation of China。
文摘To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProjects(51179035,51779057)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.
基金Project (50490272) supported by the National Natural Science Foundation of China project(NCET-05-0687) supportedby Programfor New Century Excellent Talents project (040109) supported bythe Doctor Degree Paper Innovation Engineering of CentralSouth University
文摘Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Project(2014QNA50) supported by Fundamental Research Funds for the Central Universities,ChinaProject(51404248) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,China
文摘The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the surrounding rock, a mechanical model was developed for the stability of the roadway support and surrounding rock. Analysis of the bearing capacity of the roof back-wall guard-board and modelling of the equations for the maximum deflection and the maximum compressive stress of the top and side beams of the I-shaped steel support were undertaken. Simultaneously, the model was used to calculate and analyse the stability of the top and side beams of the I-shaped steel support structure and analyse the criteria for their stability. The results provide a reliable theoretical basis for the judgment of the stability of the surrounding rock and support structure. The theoretical evaluation results are consistent with field data. Finally, the key support parameters of the top and side beams of the I-shaped steel support structure and the variation of the maximum deflection and the maximum compressive stress as affected by the influence of the guard-board length were investigated. It is concluded that, as the back-board length increases, the maximum compressive stress in the top beam of the I-shaped steel support increases while the compressive stress in the side beam decreases. The results show that the accuracy of judgment of the stability of a supported retreating roadway is improved, providing guidance for the design of such typical I-shaped steel support and back-board structures.