期刊文献+

脉冲干扰复数域Cohen-Grossberg神经网络的稳定性 被引量:2

Stability of Impulsive Disturbance Complex-Valued Cohen-Grossberg Neural Networks in a Complex Number Domain
在线阅读 下载PDF
导出
摘要 为了分析脉冲干扰因素对复数域神经网络的影响,研究了一类具有脉冲干扰的变时滞复数域CohenGrossberg神经网络的平衡点的动态行为.在假定放大函数、自反馈函数以及激活函数定义在复数域的情况下,首先,利用M矩阵和同胚映射的相关原理,分析了该系统平衡点的存在性和唯一性;其次,利用向量Lyapunov函数法以及数学归纳法,研究了该系统平衡点的全局模指数稳定性,并建立的稳定性判据;最后,通过两个数值仿真算例验证了所得结论的实用性和正确性.仿真结果显示系统状态在0.5 s便可收敛到平衡状态.研究结果表明:时滞和脉冲干扰强度越大、放大函数越小,则神经元状态的指数收敛速度越慢. To analyse the effect of impulsive disturbances on neural networks,the dynamical behaviour of these disturbances was examined at the module of the equilibrium point of a class of complex-valued Cohen-Grossberg neural networks with time-varying delays.It was assumed that amplification,self-feedback,and activation functions were defined in a complex number domain.First,the existence and uniqueness of the equilibrium point of the system were analysed by utilising the corresponding property of the M matrix and the theorem of homeomorphism mapping.Second,the globally exponential stability of the module of the equilibrium point of the system was studied by applying the vector Lyapunov function and mathematical induction methods.The corresponding stability criteria were then established.Finally,two numerical examples from simulations were given to illustrate the practicability and correctness of the obtained results.The simulation results revealed that the states of the addressed system can reach equilibrium within 0.5 s.Other results showed that the greater the delay and impulsive strength and the smaller the amplification,the slower was the state convergence rate.
作者 徐晓惠 徐全 施继忠 张继业 陈子龙 XU Xiaohui;XU Quan;SHI Jizhong;ZHANG Jiye;CHEN Zilong(Key Laboratory of Automobile Measurement and Control&Safty,Xihua University,Chengdu 610039,China;Key Laboratory of Fluid and Power Machinery,Ministry of Education,Xihua University,Chengdu 610039,China;School of Technology,Xihua University,Chengdu 610039,China;College of Engineering,Zhejiang Normal University,Jinhua 321004,China;National Traction Power Laboratory,Southwest Jiaotong University,Chengdu 610031,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2018年第4期820-828,共9页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(11402214 11572264) 四川省教育厅自然科学重点项目(17ZA0364 16ZB0163) 四川省青年科技创新研究团队(2017TD0035 2017TD0026 2015TD0021 2016HH0010) 浙江省自然科学基金资助项目(LY14E08006)
关键词 COHEN-GROSSBERG神经网络 复数域 脉冲干扰 变时滞 模指数稳定性 LYAPUNOV函数 Cohen-Grossberg neural networks complex number domain impulsive disturbances time-varying delays exponential stability Lyapunov function
作者简介 徐晓惠(1982—),女,副教授,研究方向为复杂非线性关联大系统的稳定性分析与控制,E-mail:xhxu@163.com。;通信作者:徐全(1982-),男,副教授,博士,研究方向为分数阶复杂关联系统的动态行为,E-mail:quanxnjd@sina.com。
  • 相关文献

参考文献4

二级参考文献65

  • 1ZHANGJi-ye.GLOBAL STABILITY ANALYSIS IN CELLULAR NEURAL NETWORKS WITH UNBOUNDED TIME DELAYS[J].Applied Mathematics and Mechanics(English Edition),2004,25(6):686-693. 被引量:2
  • 2邓飞其,赵碧蓉,罗琦.具分布参数的随机Hopfield神经网络的指数稳定(英文)[J].控制理论与应用,2005,22(2):196-200. 被引量:2
  • 3LI Kelin,SONG Qiankun.Exponential stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms[J].Neurocomputing,2008,72(1-3):231-240.
  • 4COHEN M A,GROSSBERG S.Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Transaction on Systems,Man and Cybernetics Society,1983,13(5):815-825.
  • 5ZHANG J Y,SUDA Y,KOMINE H.Global exponential stability of cohen-grossberg neural networks with variable delays[J].Physics Letter A,2005,338(1):44-50.
  • 6XIONG Wenjun,CAO Jinde.Absolutely exponential stability of Cohen-Grossberg neural networks with unbounded delays[J].Neurocomputing,2005,68(1):1-12.
  • 7LI Chuandong,LIAO Xiaofeng,ZHANG Rong.A global exponential robust stability criterion for interval delayed neural networks with variable delays[J].Neurocomputing,2006,69(7-9):803-809.
  • 8ZHANG Jiye,SUDA Y,IWASA T.Absolutely exponential stability of a class of neural networks with unbounded delays[J].Neural Networks,2004,17(3):391-397.
  • 9ARIK S,ORMAN Z.Global stability analysis of Cohen Grossberg neural networks with time varying delays[J].Physics Letter A,2005,341(5):410-421.
  • 10XU Daoyi,YANG Zhichun.Impulsive delay differential inequality and stability of neural networks[J].Mathematical Analysis and Applications,2005,305(1):107-120.

共引文献14

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部