Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism...Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, t...In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.展开更多
Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented f...Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.展开更多
Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the fin...Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.展开更多
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea...Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
基金Project(2015B020238014)supported by the Science and Technology Program of Guangdong Province,China。
文摘Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
基金Project(Y5080022) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(RC1202) supported by Scientific and Technological Program of Water Resources Department of Zhejiang Province in 2012,ChinaProject(Y201224384) supported by Scientific Research Program of Education Department of Zhejiang Province in 2012,China
文摘In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.
基金Project(2011CB013406)supported by National Basic Research Program of ChinaProjects(51305119,51375133)supported by National Natural Science Foundation of China
文摘Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.
基金Project(2012R1A1A2042625) supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.
基金Project(50875265) supported by the National Natural Science Foundation of ChinaProject(20080440992) supported by the Postdoctoral Science Foundation of ChinaProject(2009SK3159) supported by the Technology Support Plan of Hunan Province,China
文摘Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.