期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
一种纯方位多目标跟踪的联合多高斯混合概率假设密度滤波器 被引量:1
1
作者 薛昱 冯西安 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4295-4304,共10页
现有的多模型-高斯混合-概率假设密度(MM-GM-PHD)滤波器被广泛用于不确定机动目标跟踪,但它不能在不同模型下保持并行的估计,导致各模型的似然值滞后于目标机动。为此,该文提出一种联合多高斯混合概率假设密度(JMGM-PHD)滤波器,并将其... 现有的多模型-高斯混合-概率假设密度(MM-GM-PHD)滤波器被广泛用于不确定机动目标跟踪,但它不能在不同模型下保持并行的估计,导致各模型的似然值滞后于目标机动。为此,该文提出一种联合多高斯混合概率假设密度(JMGM-PHD)滤波器,并将其用于纯方位多目标跟踪。首先,推导了JMGM模型,其中每个单目标状态估计由一组并行的、带模型概率的高斯函数描述,该状态估计的概率由一个非负的权重来表征。一组权值、模型概率、均值和协方差被统称为JMGM分量。根据贝叶斯规则,推导了JMGM分量的更新方法。然后,利用JMGM模型近似多目标PHD。根据交互式多模型(IMM)规则,推导出JMGM分量的交互、预测和估计方法。将所提JMGM-PHD滤波器应用于纯方位跟踪(BOT)时,针对同时执行平移和旋转的观测站,基于复合函数求导规则推导出一种计算线性化观测矩阵的方法。所提JMGM-PHD滤波器保持了单模型PHD滤波器的形式,但能够自适应地跟踪不确定机动目标。仿真结果表明,JMGM-PHD滤波器克服了似然值滞后于目标机动的问题,在跟踪精度和计算成本方面均优于MM-GM-PHD滤波器。 展开更多
关键词 不确定机动目标跟踪 概率假设密度滤波器 交互多模型 平移和旋转 纯方位跟踪
在线阅读 下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 被引量:6
2
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合势化概率假设密度 脉冲多普勒雷达
在线阅读 下载PDF
高斯混合概率假设密度算法对多目标的跟踪研究
3
作者 蒋宏 田雨芬 +1 位作者 丁全心 梁国威 《航空科学技术》 2011年第5期67-70,共4页
为了规避数据关联的困难,本文深入研究了适宜多目标跟踪工程应用,线性高斯多目标模型假设下的高斯混合概率假设密度算法(GM-PHD),详细给出了后验PHD高斯元素的均值、方差和权值的解析递推式,使用了修剪和合并方法控制高斯元素数目的指... 为了规避数据关联的困难,本文深入研究了适宜多目标跟踪工程应用,线性高斯多目标模型假设下的高斯混合概率假设密度算法(GM-PHD),详细给出了后验PHD高斯元素的均值、方差和权值的解析递推式,使用了修剪和合并方法控制高斯元素数目的指数增长。最后,给出了一系列仿真实验,验证了在检测不确定和高杂波环境下,即使对目标数量未知和时变的场景,GM-PHD都能有效地完成跟踪,将其扩展应用于非线性多目标模型,同样得到了令人满意的跟踪效果。 展开更多
关键词 概率假设密度 线性高斯多目标模型 高斯混合概率假设密度 解析解
在线阅读 下载PDF
针对低检测概率的概率假设密度滤波算法 被引量:6
4
作者 张腾 曹晨 +1 位作者 张靖 邢孟道 《中国电子科学研究院学报》 北大核心 2018年第1期36-41,共6页
当跟踪目标属于隐身目标、低空目标或处于强杂波和干扰环境,都会导致雷达的目标检测概率降低,丢失率较高。因此,本文着重研究PHD算法在检测概率较低的情况下跟踪稳定性不佳的缺陷,找出了一种适用于低目标检测概率的L-GMPHD滤波,通过对... 当跟踪目标属于隐身目标、低空目标或处于强杂波和干扰环境,都会导致雷达的目标检测概率降低,丢失率较高。因此,本文着重研究PHD算法在检测概率较低的情况下跟踪稳定性不佳的缺陷,找出了一种适用于低目标检测概率的L-GMPHD滤波,通过对前一时刻状态估计值外推,若发生漏检,则将外推值加入当前时刻状态估计值中,确保了目标的状态估计不被裁剪去除。从MATLAB仿真结果可知,L-GMPHD滤波器处于检测概率较低的情况时,能够明显改善目标跟踪的稳定性。该方法能够保持高精度的多目标跟踪,具有良好的工程应用前景。 展开更多
关键词 多目标跟踪 低目标检测概率 概率假设密度滤波(PHDF) 高斯混合概率假设密度GMPHD 状态值外推
在线阅读 下载PDF
改进的概率假设密度滤波多目标检测前跟踪算法 被引量:20
5
作者 林再平 周一宇 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第5期475-480,共6页
基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研... 基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计. 展开更多
关键词 检测前跟踪 概率假设密度滤波 粒子更新 粒子采样
在线阅读 下载PDF
多扩展目标的高斯混合概率假设密度滤波器 被引量:13
6
作者 韩玉兰 朱洪艳 +1 位作者 韩崇昭 王静 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第4期95-101,共7页
针对多扩展目标跟踪中状态信息难以估计的问题,提出了一种可以估计扩展目标运动状态和形状信息的多扩展目标高斯混合概率假设密度(RHM-GMPHD)滤波器。首先利用描述凸星形扩展目标量测源分布的随机超曲面模型和传感器量测方程,建立扩展... 针对多扩展目标跟踪中状态信息难以估计的问题,提出了一种可以估计扩展目标运动状态和形状信息的多扩展目标高斯混合概率假设密度(RHM-GMPHD)滤波器。首先利用描述凸星形扩展目标量测源分布的随机超曲面模型和传感器量测方程,建立扩展目标运动状态及形状信息与量测之间关系的伪量测函数;然后结合扩展目标状态预报信息,推导了扩展目标状态更新方程,递推地对扩展目标运动状态及形状信息进行估计跟踪。此外,还建立了Jaccard距离来度量RHMGMPHD滤波器对目标形状的估计性能。与联合概率数据关联(JPDA)滤波器和GMPHD滤波器相比,RHM-GMPHD滤波器不仅可以估计凸星形扩展目标的形状信息,并能有效提高对目标数和运动状态的估计精度。仿真实验表明,RHM-GMPHD滤波器对质心估计的均方根误差分别约为JPDA和GMPHD滤波器的1/3和1/2,对目标数的估计接近真实值,对形状估计的Jaccard距离一般小于0.2。 展开更多
关键词 扩展目标跟踪 高斯混合概率假设密度 随机超曲面模型 形状估计
在线阅读 下载PDF
基于势概率假设密度滤波的检测前跟踪新算法 被引量:13
7
作者 林再平 周一宇 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第5期437-443,共7页
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前... 基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优. 展开更多
关键词 检测前跟踪 概率假设密度滤波 粒子更新 势分布更新
在线阅读 下载PDF
基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法 被引量:14
8
作者 占荣辉 刘盛启 +1 位作者 欧建平 张军 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2593-2599,共7页
实现目标数目未知且可变条件下的多目标检测与跟踪是个极具挑战性的问题,在信噪比较低的情况下更是如此。针对这一问题,该文提出一种基于点扩散模型的多目标检测前跟踪改进算法。该算法在序贯蒙特卡罗概率假设密度(SMC-PHD)滤波框架下实... 实现目标数目未知且可变条件下的多目标检测与跟踪是个极具挑战性的问题,在信噪比较低的情况下更是如此。针对这一问题,该文提出一种基于点扩散模型的多目标检测前跟踪改进算法。该算法在序贯蒙特卡罗概率假设密度(SMC-PHD)滤波框架下实现,通过自适应粒子产生机制完成新生目标在像平面中的初始定位,并根据目标在图像中可能出现的位置对全体粒子集进行有效子集分割和快速权值估算,最后利用动态聚类方法完成多目标状态的准确提取。仿真结果表明,该方法有效改善了多目标检测前跟踪的估计性能,并大大提高了算法执行效率。 展开更多
关键词 多目标检测前跟踪 概率假设密度滤波器 自适应粒子采样 动态聚类 序贯蒙特卡罗
在线阅读 下载PDF
基于高斯混合带势概率假设密度滤波器的未知杂波下多机动目标跟踪算法 被引量:8
9
作者 胡子军 张林让 +1 位作者 张鹏 王纯 《电子与信息学报》 EI CSCD 北大核心 2015年第1期116-122,共7页
多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该... 多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该算法对目标和杂波分别独立建模,通过最优高斯(BFG)估计方法对真实目标的强度函数进行预测,从而使多目标强度函数独立于机动目标的运动模型,实现各时刻真实目标的强度函数、杂波源期望个数以及真实目标和杂波源的混合势分布的迭代。仿真结果表明,该算法能够有效地联合估计多机动目标状态以及杂波期望个数。 展开更多
关键词 多机动目标跟踪 未知杂波 带势概率假设密度滤波器 最优高斯估计
在线阅读 下载PDF
基于概率假设密度滤波和数据关联的脉冲多普勒雷达多目标跟踪算法 被引量:6
10
作者 谭顺成 王国宏 +1 位作者 王娜 何友 《电子与信息学报》 EI CSCD 北大核心 2013年第11期2700-2706,共7页
为了解决杂波环境下脉冲多普勒(PD)雷达的多目标跟踪问题,提出一种距离模糊情况下基于概率假设密度滤波(PHDF)和数据关联(DA)的联合解距离模糊和多目标跟踪方法。该方法使雷达采用一组脉冲重复频率(PRF)交替变换的工作模式,并对雷达生... 为了解决杂波环境下脉冲多普勒(PD)雷达的多目标跟踪问题,提出一种距离模糊情况下基于概率假设密度滤波(PHDF)和数据关联(DA)的联合解距离模糊和多目标跟踪方法。该方法使雷达采用一组脉冲重复频率(PRF)交替变换的工作模式,并对雷达生成的模糊量测进行多假设,得到扩展量测集;然后,利用PHDF可以有效滤除杂波和避免"目标-量测"数据关联的突出优点,对扩展量测集进行滤波,得到粗略的目标状态估计;最后,对PHDF的滤波结果进行"航迹-估计值"关联,给出多目标航迹信息。仿真结果表明,该算法可以同时给出目标个数和各目标状态估计,实现杂波环境和距离模糊条件下对多目标的有效跟踪。 展开更多
关键词 多目标跟踪 概率假设密度滤波(PHDF) 距离模糊 粒子滤波 脉冲重复频率(PRF)
在线阅读 下载PDF
多目标滤波中的多传感器概率假设密度算法 被引量:7
11
作者 杨可 傅忠谦 +1 位作者 王剑亭 林日钊 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1368-1373,共6页
多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PG... 多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PGFL)推导出了多传感器PHD滤波递归式,进而提出粒子标记法多传感器贯序蒙特卡洛PHD(SMC-PHD)滤波等价实现算法,降低了多传感器PHD滤波的计算复杂度。最后给出了算法的具体实现,得到了良好的多目标数目和可跟踪多目标状态的估计。 展开更多
关键词 多传感器滤波 概率假设密度 概率产生泛函 假设模型 粒子标记法
在线阅读 下载PDF
用于机动目标跟踪的多模型概率假设密度滤波器 被引量:12
12
作者 王晓 韩崇昭 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第12期1-5,共5页
针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子... 针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子的状态进行更新,再将更新后的粒子代入传统的PHD滤波器中用于估计目标的PHD的分布.该滤波器结合PHD滤波器和多模型方法的特点,可用于目标数未知的多机动目标跟踪,且对目标的数量和状态的估计更加准确.多机动目标跟踪的仿真实验表明,与已有方法相比,该滤波器对目标数的估计与真实情况基本一致,描述多目标状态估计误差的Wasserstein距离值降低了50%以上. 展开更多
关键词 机动目标跟踪 概率假设密度 多模型 估计
在线阅读 下载PDF
多目标跟踪的高斯混合概率假设密度滤波算法 被引量:4
13
作者 郝燕玲 孟凡彬 +2 位作者 周卫东 孙枫 欧阳泰山 《弹箭与制导学报》 CSCD 北大核心 2010年第3期35-40,共6页
在多目标跟踪中,在观测数据存在关联的不确定、检测的不确定、噪声和虚警情形下,同时估计出随时间变化的目标数及目标状态,高斯混合概率假设密度(GMPHD)提供了一种有效的方法。PHD滤波不存在解析解,而GMPHD滤波提供了PHD递推的解析解。... 在多目标跟踪中,在观测数据存在关联的不确定、检测的不确定、噪声和虚警情形下,同时估计出随时间变化的目标数及目标状态,高斯混合概率假设密度(GMPHD)提供了一种有效的方法。PHD滤波不存在解析解,而GMPHD滤波提供了PHD递推的解析解。仿真结果表明,GMPHD滤波能稳健的跟踪目标数未知或时间变化时的目标状态和目标数。 展开更多
关键词 随机有限集 多目标跟踪 高斯混合 概率假设密度
在线阅读 下载PDF
多目标跟踪的概率假设密度粒子滤波 被引量:10
14
作者 田淑荣 王国宏 何友 《海军航空工程学院学报》 2007年第4期417-420,430,共5页
在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大.如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题.文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩--概率假设密度(PHD),PHD... 在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大.如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题.文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩--概率假设密度(PHD),PHD在任意区域S上的积分是S内目标数的期望值.因未记录目标身份,避免了数据互联问题.仿真中,传感器为被动雷达,目标观测值为距离、角度及速度时,对上述的PHD滤波进行了粒子实现,并对观测值是否相关的不同情况进行比较.PHD粒子滤波应用在非线性模型的多目标跟踪,实验结果表明,滤波可以稳健跟踪目标数为变数的情况,得到了接近真实情况的结果. 展开更多
关键词 多目标跟踪 粒子滤波 概率假设密度 随机集 有限集统计
在线阅读 下载PDF
基于多伯努利概率假设密度的扩展目标跟踪方法 被引量:6
15
作者 李文娟 顾红 苏卫民 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3114-3121,共8页
高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS)类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算法。该... 高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS)类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算法。该算法首先假设扩展目标的量测数目服从多伯努利分布,然后通过有限集统计(FISST)理论的多目标微积分推导得到校正等式,最后给出了高斯混合(GM)框架的仿真结果。仿真结果表明该算法能够获得比泊松ET-PHD算法更好的跟踪性能。 展开更多
关键词 扩展目标跟踪 概率假设密度 多伯努利
在线阅读 下载PDF
基于序贯蒙特卡洛与概率假设密度滤波的主动分布式声纳多目标跟踪 被引量:11
16
作者 邵鹏飞 王蕾 王方勇 《兵工学报》 EI CAS CSCD 北大核心 2020年第5期941-949,共9页
针对杂波数量多、目标数量和状态不确实性及观测不确实性等问题,提出了一种基于序贯蒙特卡洛与概率假设密度(SMC-PHD)滤波的分布式声纳多目标自动跟踪方法。通过随机有限集模型对多目标状态和观察进行表征,结合序贯蒙特卡洛方法中的重... 针对杂波数量多、目标数量和状态不确实性及观测不确实性等问题,提出了一种基于序贯蒙特卡洛与概率假设密度(SMC-PHD)滤波的分布式声纳多目标自动跟踪方法。通过随机有限集模型对多目标状态和观察进行表征,结合序贯蒙特卡洛方法中的重要性采样和重采样策略递归地实现多目标后验近似下概率假设密度的传递和滤波。利用分布式声纳观测模拟数据,对不同节点数目下基于SMC-PHD滤波的多目标跟踪进行了仿真实验。仿真实验结果表明:该方法适用于主动分布式声纳系统,能在多杂波环境下对数目未知且时变的多目标进行实时自动跟踪;在4个平台节点的主动分布式声纳系统中,实现了平均相对误差小于5%的水下多目标高精度跟踪,且目标数目估计值与真实值一致。 展开更多
关键词 主动分布式声纳 随机有限集 序贯蒙特卡洛 概率假设密度滤波 多目标跟踪
在线阅读 下载PDF
双传感器概率假设密度滤波解析实现方法 被引量:4
17
作者 许建 黄放明 贲德 《现代雷达》 CSCD 北大核心 2014年第4期34-41,共8页
针对双传感器概率假设密度(PHD)理论的解析实现进行研究。Mahler给出的双传感器PHD理论,由于其中含有抽象的多目标积分,并且其中的二元分割过程计算量十分巨大,所以无法计算机实现。文中在线性高斯混合的假设条件下给出了严格双传感器PH... 针对双传感器概率假设密度(PHD)理论的解析实现进行研究。Mahler给出的双传感器PHD理论,由于其中含有抽象的多目标积分,并且其中的二元分割过程计算量十分巨大,所以无法计算机实现。文中在线性高斯混合的假设条件下给出了严格双传感器PHD滤波的递推解析公式,并且通过提出"有效二元分割"算法极大降低了严格理论意义下的双传感器PHD算法的计算复杂度,从而解决了双传感器PHD滤波的计算实现问题。计算机模拟仿真验证了所提出算法的有效性。 展开更多
关键词 多目标跟踪 多传感器 概率假设密度滤波 有效二元分割
在线阅读 下载PDF
基于随机摄动再采样的粒子概率假设密度滤波器 被引量:2
18
作者 徐从安 何友 +2 位作者 夏沭涛 程俊图 董云龙 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2819-2825,共7页
作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致... 作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致粒子贫化问题产生。为解决这一问题,该文提出一种新的基于随机摄动再采样的粒子概率假设密度滤波器。首先,全面分析了粒子概率假设密度滤波因粒子贫化问题导致目标失跟的过程。然后设计了一种随机摄动再采样算法,该算法在重采样导致粒子多样性缺失时,根据源粒子的位置与复制次数随机产生相应数目的新粒子,并对源粒子进行删减,其可在保留源粒子信息的前提下保持粒子的多样性。最后,该文将该算法纳入概率假设密度滤波框架,提出了一种新的粒子概率假设密度滤波器。仿真结果表明该滤波器在不显著增加运行时间的前提下能够克服粒子贫化问题,相比标准的粒子概率假设密度滤波器具有更好的跟踪性能。 展开更多
关键词 多目标跟踪 概率假设密度 粒子滤波 随机摄动再采样
在线阅读 下载PDF
随机集的概率假设密度粒子滤波 被引量:4
19
作者 田淑荣 盖明久 何友 《海军航空工程学院学报》 2006年第4期455-458,共4页
多目标跟踪问题中,当目标数已知时,可以用概率数据互联(PDA)或联合概率数据互联(JPDA)算法.而当目标数未知或随时间变化时,需要对不同目标数的跟踪进行比较.可以把目标集看作随机集进行讨论,目标数N是随机变量.随机集的跟踪通过有限集统... 多目标跟踪问题中,当目标数已知时,可以用概率数据互联(PDA)或联合概率数据互联(JPDA)算法.而当目标数未知或随时间变化时,需要对不同目标数的跟踪进行比较.可以把目标集看作随机集进行讨论,目标数N是随机变量.随机集的跟踪通过有限集统计(FISST)理论来完成.文中讨论了用粒子滤波实现跟踪随机集的方法.实验表明,在杂波环境下,粒子滤波可以稳健跟踪目标状态和目标数. 展开更多
关键词 多目标跟踪 随机集 粒子滤波 有限集统计 概率假设密度(PHD)滤波
在线阅读 下载PDF
一种改进的高斯逆威沙特概率假设密度扩展目标跟踪算法 被引量:1
20
作者 李文娟 吕靖 +3 位作者 顾红 苏卫民 马超 杨建超 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1279-1286,共8页
假设扩展目标(ET)的扩展和量测数目分别为椭圆和泊松模型,高斯逆威沙特概率假设密度(GIW-PHD)能够估计扩展目标的运动和扩展状态。然而,该滤波器对空间邻近目标的数目、非椭圆目标和受到遮挡目标的扩展估计不够准确。针对这些问题,该文... 假设扩展目标(ET)的扩展和量测数目分别为椭圆和泊松模型,高斯逆威沙特概率假设密度(GIW-PHD)能够估计扩展目标的运动和扩展状态。然而,该滤波器对空间邻近目标的数目、非椭圆目标和受到遮挡目标的扩展估计不够准确。针对这些问题,该文提出一种改进的GIW-PHD。首先,假设目标扩展为一个相同尺寸的参考椭圆,通过设计新的散射矩阵得到改进的随机矩阵(RM)方法。然后,将改进的RM方法与假设量测数目服从多伯努利分布的ET-PHD结合,得到改进的GIW-PHD滤波器。仿真和实验结果表明,与传统GIW-PHD相比,改进的GIW-PHD估计的目标数目和量测数目较多,扩展较大的椭圆和非椭圆目标的扩展更准确。 展开更多
关键词 扩展目标跟踪 高斯逆威沙特概率假设密度 随机矩阵 多伯努利分布
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部