期刊文献+

基于多伯努利概率假设密度的扩展目标跟踪方法 被引量:6

Extended Target Tracking Method Based on Multi-Bernoulli Probability Hypothesis Density
在线阅读 下载PDF
导出
摘要 高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS)类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算法。该算法首先假设扩展目标的量测数目服从多伯努利分布,然后通过有限集统计(FISST)理论的多目标微积分推导得到校正等式,最后给出了高斯混合(GM)框架的仿真结果。仿真结果表明该算法能够获得比泊松ET-PHD算法更好的跟踪性能。 Extended targets usually generate multiple measurements in high resolution radar systems. Existing algorithms of the Random Finite Set (RFS) assume that the measurement number of extended targets follows Poisson distribution in a general way. However, this assumption is inconsistent with actual situations. Considering this issue, a Multi-Bernoulli Extended Target Probability Hypothesis Density (MB-ET-PHD) tracking method is proposed. First, this method assumes that the measurement number of extended targets is Multi-Bernoulli (MB) distributed. Then, its update equation is derived by using the FInite Set STatistics (FISST) multi-target calculus. Finally, simulated results of Gaussian Mixture (GM) framework are given. The simulation results show that the proposed method can obtain better tracking performance compared with the Poisson ET-PHD method.
作者 李文娟 顾红 苏卫民 LI Wenjuan GU Hong SU Weimin(School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology Nanjing 210094, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3114-3121,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61471198)~~
关键词 扩展目标跟踪 概率假设密度 多伯努利 Extended target tracking Probability Hypothesis Density (PHD) Multi-Bernoulli (MB)
作者简介 李文娟:女,1990年生,博士生,研究方向为场面监视雷达信号处理、目标跟踪与识别. 顾红:男,1967年生,教授,博士生导师,主要研究方向为雷达信号处理、噪声雷达体制、稀疏阵列信号处理.通信作者:顾红guhongjust@163.com 苏卫民:男,1959年生,教授,博士生导师,主要研究方向为阵列信号处理、雷达成像.
  • 相关文献

参考文献2

二级参考文献33

  • 1Mahler R. Statistical Multisouree-Multitarget Information Fusion[M]. Norwood, MA: Artech House, 2007: 305-682.
  • 2Lundgren M, Svensson L, and Hammarstrand L. A CPHD filter for tracking with spawning models[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 496-507.
  • 3Punithakumar K, Kirubarajan T, and Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98.
  • 4Ouyang Cheng, Ji Hong-bing, and Guo Zhi-qiang. Extensions of the SMC-PHD filters for jump Markov systems[J]. Signal Processing, 2012, 92 (6): 1422-1430.
  • 5Pasha S A, Vo B N, Tuan H D, et al.. A Gaussian mixture PHD filter for jump Markov system models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936.
  • 6Georgescu R and Willett P. The multiple model CPHD tracker[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1741-1751.
  • 7Yang Jin-long, Ji Hong-bing, and Ge Hong-wei. Multi-model particle cardinality-balanced multi-target multi-Bernoulli algorithm for multiple manoeuvring target tracking[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 101-112.
  • 8Mahler R, Vo B T, and Vo B N. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513.
  • 9Chen X, Tharmarasa R, Pelletier M, et al.. Integrated clutter estimation and target tracking using Poisson point process[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1210-1235.
  • 10Vo B T, Vo B N, Hoseinnezhad R, et al.. Robust multi-Bernoulli filtering[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 399-409.

共引文献12

同被引文献16

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部