为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对...为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。展开更多
局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法...局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。展开更多
文摘为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。
文摘局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。
文摘局部保持投影(Locality preserving projections,LPP)算法只保持了目标在投影后的邻域局部信息,为了更好地刻画数据的流形结构,引入了类内和类间局部散度矩阵,给出了一种基于有效且稳定的大间距准则(Maximum margin criterion,MMC)的不相关保局投影分析方法,该方法在最大化散度矩阵迹差时,引入尺度因子α,对类内和类间局部散度矩阵进行加权,以便找到更适合分类的子空间并且可避免小样本问题;更重要的是,大间距准则下提取的判别特征集一般情况下是统计相关的,造成了特征信息的冗余,因此,通过增加一个不相关约束条件,利用推导出的公式提取不相关判别特征集,这样做,对正确识别更为有利.在Yale人脸库、PIE人脸库和MNIST手写数字库上的测试结果表明,本文方法有效且稳定,与LPP、LDA(Linear discriminant analysis)和LPMIP(Locality-preserved maximum information projection)方法等相比,具有更高的正确识别率。