期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于核主成分分析BP_Ada Boost算法的数控铣床故障诊断 被引量:8
1
作者 朱翔 谢峰 《机械强度》 CAS CSCD 北大核心 2019年第6期1292-1297,共6页
刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利... 刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利用BP_AdaBoost算法对刀具磨损状态进行诊断的方法。通过在数控铣床的加工工件与其夹具间安装测力仪及安装加速度传感器,来采集立铣刀振动信号与切削力信号;然后对振动信号与切削力信号进行小波包分析处理,将处理好的信号进行核主成分分析(KPCA),降维以后作为立铣刀磨损状态的特征向量;最后利用得到的特征向量训练和验证BP_AdaBoost分类模型。实验结果表明BP_AdaBoost算法比SVM算法能更有效实现对数控铣床的刀具磨损状态的评估。 展开更多
关键词 刀具磨损状态 切削力信号 加速度信号 小波包分析 核主成分分析降维 BP_AdaBoost
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部