期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于核主成分分析BP_Ada Boost算法的数控铣床故障诊断
被引量:
8
1
作者
朱翔
谢峰
《机械强度》
CAS
CSCD
北大核心
2019年第6期1292-1297,共6页
刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利...
刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利用BP_AdaBoost算法对刀具磨损状态进行诊断的方法。通过在数控铣床的加工工件与其夹具间安装测力仪及安装加速度传感器,来采集立铣刀振动信号与切削力信号;然后对振动信号与切削力信号进行小波包分析处理,将处理好的信号进行核主成分分析(KPCA),降维以后作为立铣刀磨损状态的特征向量;最后利用得到的特征向量训练和验证BP_AdaBoost分类模型。实验结果表明BP_AdaBoost算法比SVM算法能更有效实现对数控铣床的刀具磨损状态的评估。
展开更多
关键词
刀具磨损状态
切削力信号
加速度信号
小波包
分析
核主成分分析降维
BP_AdaBoost
在线阅读
下载PDF
职称材料
题名
基于核主成分分析BP_Ada Boost算法的数控铣床故障诊断
被引量:
8
1
作者
朱翔
谢峰
机构
安徽大学电气工程与自动化学院
出处
《机械强度》
CAS
CSCD
北大核心
2019年第6期1292-1297,共6页
基金
安徽省科技攻关项目(1804009020003)
国家自然科学基金项目(51975003)资助~~
文摘
刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利用BP_AdaBoost算法对刀具磨损状态进行诊断的方法。通过在数控铣床的加工工件与其夹具间安装测力仪及安装加速度传感器,来采集立铣刀振动信号与切削力信号;然后对振动信号与切削力信号进行小波包分析处理,将处理好的信号进行核主成分分析(KPCA),降维以后作为立铣刀磨损状态的特征向量;最后利用得到的特征向量训练和验证BP_AdaBoost分类模型。实验结果表明BP_AdaBoost算法比SVM算法能更有效实现对数控铣床的刀具磨损状态的评估。
关键词
刀具磨损状态
切削力信号
加速度信号
小波包
分析
核主成分分析降维
BP_AdaBoost
Keywords
Tool wear state
Cutting force signal
Acceleration signal
Wavelet packet analysis
Kernel principal component analysis(KPCA)dimension reduction
BP_Ada Boost
分类号
TH117.1 [机械工程—机械设计及理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于核主成分分析BP_Ada Boost算法的数控铣床故障诊断
朱翔
谢峰
《机械强度》
CAS
CSCD
北大核心
2019
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部