期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于核主分量分析的经验模式分解及其工程应用 被引量:4
1
作者 王雷 王奉涛 +2 位作者 朱泓 张志新 郭正刚 《振动与冲击》 EI CSCD 北大核心 2010年第2期39-41,68,共4页
若信号的信噪比较小,经验模式分解不能正确分解出基本模式分量,分量中含有伪分量。根据此种情况,提出一种核主分量分析与经验模式分解相结合的方法。该方法首先建立信号相空间,利用核主分量分析方法提取相空间的核主分量,然后利用投影... 若信号的信噪比较小,经验模式分解不能正确分解出基本模式分量,分量中含有伪分量。根据此种情况,提出一种核主分量分析与经验模式分解相结合的方法。该方法首先建立信号相空间,利用核主分量分析方法提取相空间的核主分量,然后利用投影逆过程将得到的核主分量逆向投影回原相空间,从而重建信号相空间。最后对重建的相空间所对应的信号作经验模式分解。此方法可以有效消除噪声和冗余对经验模式分解的影响,提高经验模式分解的适应能力保证分解的有效性,确保其能够分解出正确的基本模式分量。通过工程实例进一步验证了该方法的可行性。 展开更多
关键词 分量分析 经验模式分解 信号处理
在线阅读 下载PDF
基于核主分量分析的高分辨雷达目标特征提取与识别 被引量:9
2
作者 丛瑜 肖怀铁 付强 《电光与控制》 北大核心 2008年第2期31-35,38,共6页
研究了核主分量分析(KPCA,Kernel Principal Component Analysis)在高分辨雷达目标特征提取与识别中的应用。首先讨论了KPCA算法原理,然后将KPCA应用于雷达目标距离像特征提取,并采用支持向量机进行分类,提出了基于核主分量分析的高分... 研究了核主分量分析(KPCA,Kernel Principal Component Analysis)在高分辨雷达目标特征提取与识别中的应用。首先讨论了KPCA算法原理,然后将KPCA应用于雷达目标距离像特征提取,并采用支持向量机进行分类,提出了基于核主分量分析的高分辨雷达目标特征提取与识别方法。在核函数的选取上构造了一个组合核函数,最后用4类目标数据进行了实验,并与采用高斯核函数方法进行了比较,实验结果表明,该方法能够提高目标识别性能。 展开更多
关键词 分量分析 雷达目标识别 一维距离像 支持矢量机
在线阅读 下载PDF
基于核主分量相关判别分析特征提取方法的目标HRRP识别 被引量:11
3
作者 李龙 刘峥 《电子与信息学报》 EI CSCD 北大核心 2018年第1期173-180,共8页
为有效提高雷达高分辨1维距离像目标识别系统的总体性能,需要对目标高分辨1维距离像进行特征提取,以得到具有最小信息损失、高可分性且低维度的目标特征,为实现该目的提出一种基于核主分量相关判别分析的特征提取算法。该算法基于目标... 为有效提高雷达高分辨1维距离像目标识别系统的总体性能,需要对目标高分辨1维距离像进行特征提取,以得到具有最小信息损失、高可分性且低维度的目标特征,为实现该目的提出一种基于核主分量相关判别分析的特征提取算法。该算法基于目标高分辨1维距离像的统计特性,通过对核主分量分析中核函数的选择,实现对不同类型距离单元的特征提取。同时综合线性判别分析与典型相关分析理论构建新的准则函数,以实现特征空间中类内相关性与类间差异性最大化,同时减少目标特征中的冗余信息。利用实测数据进行实验,结果表明该方法提高了特征向量的可分性,降低了特征向量的维度,并且对该算法在不同强度杂波下的识别性能进行了分析,实验结果表明,该方法可以有效的提高目标高分辨1维距离像目标识别系统的总体性能。 展开更多
关键词 高分辨距离像目标识别 特征提取 分量分析 线性判别分析 典型相关分析
在线阅读 下载PDF
一种核主分量分析重构的雷达目标识别方法 被引量:1
4
作者 朱劼昊 周建江 +1 位作者 汪飞 吴杰 《兵工学报》 EI CAS CSCD 北大核心 2010年第6期697-702,共6页
针对雷达目标高分辨距离像(High-Resolution Range Profile,HRRP)识别中等角域划分造成的目标散射特性失配问题,提出一种基于核主分量分析重构的雷达目标识别方法。该方法在等角域划分下利用核主分量分析提取每个角域内HRRP的特征子空间... 针对雷达目标高分辨距离像(High-Resolution Range Profile,HRRP)识别中等角域划分造成的目标散射特性失配问题,提出一种基于核主分量分析重构的雷达目标识别方法。该方法在等角域划分下利用核主分量分析提取每个角域内HRRP的特征子空间,再将测试样本投影到各角域特征子空间中进行重构,最后通过计算最小重构误差来判别测试样本的类别。基于5种飞机目标的仿真实验表明,核主分量分析重构方法可以松弛角域划分范围,降低角域划分的精度要求,相比主分量分析重构方法和最大相关系数模板匹配法有效提高了识别性能。 展开更多
关键词 信息处理技术 高分辨距离像 雷达自动目标识别 分量分析重构
在线阅读 下载PDF
核主分量分析法提取液体火箭发动机故障特征 被引量:1
5
作者 高正明 何彬 +2 位作者 赵娟 裴永泉 左广霞 《导弹与航天运载技术》 北大核心 2009年第2期5-7,36,共4页
某型号液体火箭故障仿真过程中涉及大量描述发动机状态的参数,因此在对该设备进行故障诊断前,需要对监测或仿真数据进行特征提取,以减少存储空间,缩短故障诊断时间。采用主分量分析法及其改进算法核主分量分析法对其故障仿真数据进行特... 某型号液体火箭故障仿真过程中涉及大量描述发动机状态的参数,因此在对该设备进行故障诊断前,需要对监测或仿真数据进行特征提取,以减少存储空间,缩短故障诊断时间。采用主分量分析法及其改进算法核主分量分析法对其故障仿真数据进行特征提取,从多个描述该型号一级火箭发动机故障状态的变量中选取了少量特征,采用这些特征进行故障诊断时,诊断结果正确,同时显著提高了故障诊断的实时性能。 展开更多
关键词 分量分析 特征提取 故障特征
在线阅读 下载PDF
基于核主成分分析与长短时记忆网络的水电机组监测预警
6
作者 王勇飞 李晓飞 +3 位作者 孙雨欣 张健 郭鹏程 王仁本 《振动与冲击》 EI CSCD 北大核心 2024年第24期287-294,共8页
水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动... 水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动信号数据融合研究,通过KPCA方法去除了多通道信号间冗余,实现了原始数据的压缩表征,并获得了机组在稳态运行工况的T2(Hotelling’s Fsquared)和SPE(square prediction error)控制限,将其作为预警阈值对融合后信号进行异常状态识别。以LSTM为基础构建了时序预测模型,结合异常状态识别结果实现了水电机组状态预警功能。研究通过案例实施验证了所提方法的有效性,并与KPCA-RNN和KPCA-Informer等模型进行了对比,所提出KPCA-LSTM模型预测结果的R2系数大于0.97,预测偏差处于极低水平,性能优于对比模型。 展开更多
关键词 水电机组 长短时记忆网络(LSTM) 成分分析(kpca) 预警阈值
在线阅读 下载PDF
基于核主成分分析的地震属性优化方法及应用 被引量:43
7
作者 印兴耀 孔国英 张广智 《石油地球物理勘探》 EI CSCD 北大核心 2008年第2期179-183,124-125+246,共8页
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以... 传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。 展开更多
关键词 属性降维优化 成分分析(PCA) 函数 成分分析(kpca)
在线阅读 下载PDF
基于曲波域与核主成分分析的人脸识别 被引量:11
8
作者 王宪 慕鑫 +4 位作者 张彦 张方生 宋书林 平雪良 刘浩 《光电工程》 CAS CSCD 北大核心 2011年第10期98-102,共5页
针对小波变换不能充分描述人脸曲线特征的缺点,本文提出一种基于曲波域与核主成分分析(KPCA)的人脸识别算法。采用多尺度、多方向的曲波(Curvelet)变换提取图像特征,不仅具有更高的逼近精度和更好的稀疏表达能力,而且其变换系数能有效... 针对小波变换不能充分描述人脸曲线特征的缺点,本文提出一种基于曲波域与核主成分分析(KPCA)的人脸识别算法。采用多尺度、多方向的曲波(Curvelet)变换提取图像特征,不仅具有更高的逼近精度和更好的稀疏表达能力,而且其变换系数能有效表示沿曲线的奇异性。进一步使用核主成分分析(KPCA)将曲波特征系数投影到更具表达力的核空间中,通过最近邻分类器进行分类。并在JAFFE人脸库中、ORL人脸库以及FERET人脸库中做了多组实验,实验结果表明该方法在图像降维和识别率方面都达到了较好的效果。 展开更多
关键词 人脸识别 曲波变换 成分分析(kpca) 空间
在线阅读 下载PDF
基于核主成分分析的铁谱磨粒特征提取方法研究 被引量:11
9
作者 李岳 温熙森 吕克洪 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第2期113-116,共4页
针对铁谱分析的磨粒识别过程中存在原始磨粒特征描述指标参数多、非线性突出的问题,提出基于核主成分分析的磨粒特征提取方法,介绍该方法的原理与算法。结合某柴油发动机故障检测与分析系统中铁谱磨粒自动识别的应用实例,并与传统主成... 针对铁谱分析的磨粒识别过程中存在原始磨粒特征描述指标参数多、非线性突出的问题,提出基于核主成分分析的磨粒特征提取方法,介绍该方法的原理与算法。结合某柴油发动机故障检测与分析系统中铁谱磨粒自动识别的应用实例,并与传统主成份分析方法进行对比分析,结果表明该方法在进行样本非线性特征参数指标综合以及特征维数压缩方面具有可行性和有效性。 展开更多
关键词 成分分析(kpca) 铁谱磨粒 特征提取
在线阅读 下载PDF
基于主分量分析的一维距离像雷达目标识别 被引量:6
10
作者 张仲明 姜卫东 陈曾平 《电光与控制》 北大核心 2005年第5期28-31,共4页
一维距离像是自动目标识别的一种重要特征,它对目标姿态变化很敏感,只有通过进一步处理提取稳定特征才能够有效用于识别。针对距离像的这种姿态敏感性,首先分析了主分量分析(PCA)的降噪原理与核主分量分析(KPCA)的特征提取能力,然后提... 一维距离像是自动目标识别的一种重要特征,它对目标姿态变化很敏感,只有通过进一步处理提取稳定特征才能够有效用于识别。针对距离像的这种姿态敏感性,首先分析了主分量分析(PCA)的降噪原理与核主分量分析(KPCA)的特征提取能力,然后提出先用PCA滤波对一维距离像降噪再用KPCA提取较大姿态角范围内稳定特征的雷达目标一维距离像识别框架,并用四类目标的实测数据进行分类实验,表明该算法确实能够提高识别性能。 展开更多
关键词 雷达目标识别 一维距离像 分量分析 分量分析
在线阅读 下载PDF
基于支持向量机和核主成分分析的车牌字符识别 被引量:2
11
作者 潘石柱 殳伟群 王令群 《电子科技》 2006年第10期59-61,67,共4页
给出了一种结合核主成分分析(KPCA)和支持向量机(SVM)进行车牌字符识别的新方法。该算法通过KPCA进行字符的特征提取,并利用SVM分类器完成字符的识别。实验证明,KPCA在高维空间具有较强的特征选择能力,SVM的识别率也明显高于BP神经网络。
关键词 支持向量机(SVM) 成分分析(kpca)车牌字符识别
在线阅读 下载PDF
基于主分量分析的多维时间序列特征选择方法研究
12
作者 周小程 马向玲 范洪达 《海军航空工程学院学报》 2009年第5期489-492,共4页
研究了多维时间序列的特征选择问题。首先,讨论了主分量分析的原理;然后,将提出的斜率趋势算法和核函数分类算法应用于多维时间序列的特征选择过程中,并探讨了两类方法的优缺点;最后,采用两种算法对目标距离像多维时间序列进行了... 研究了多维时间序列的特征选择问题。首先,讨论了主分量分析的原理;然后,将提出的斜率趋势算法和核函数分类算法应用于多维时间序列的特征选择过程中,并探讨了两类方法的优缺点;最后,采用两种算法对目标距离像多维时间序列进行了仿真实验。实验结果表明了所应用方法的可行性和有效性. 展开更多
关键词 分量分析 斜率趋势 函数分类
在线阅读 下载PDF
联合核主成分分析
13
作者 王喆 孟芸 《沈阳大学学报(自然科学版)》 CAS 2015年第4期306-312,共7页
提出了KPCA的一种称为联合核主成分分析(Joint Kernel Principle Component Analysis,JKPCA)的变型,能够从输入和输出空间引出先验信息用于特征提取.首次将联合核映射应用于特征提取领域,而且在图像数据集上的实验结果表明,JKPCA是可行... 提出了KPCA的一种称为联合核主成分分析(Joint Kernel Principle Component Analysis,JKPCA)的变型,能够从输入和输出空间引出先验信息用于特征提取.首次将联合核映射应用于特征提取领域,而且在图像数据集上的实验结果表明,JKPCA是可行并有效的. 展开更多
关键词 成分分析(kpca) 联合映射 特征提取 方法
在线阅读 下载PDF
基于核主成分分析的多输出模型确认方法 被引量:17
14
作者 胡嘉蕊 吕震宙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第7期1470-1480,共11页
目前对于不确定性环境下多个相关的复杂计算模型进行确认的方法存在计算困难及稳定性较差的问题。针对这类复杂计算模型,提出了一种新的基于核主成分分析(KPCA)的多输出模型确认方法。该方法将核主成分分析与面积法的思想相结合,构造了... 目前对于不确定性环境下多个相关的复杂计算模型进行确认的方法存在计算困难及稳定性较差的问题。针对这类复杂计算模型,提出了一种新的基于核主成分分析(KPCA)的多输出模型确认方法。该方法将核主成分分析与面积法的思想相结合,构造了一个新的易于计算且稳定性高的模型确认指标。所提方法通过核主成分分析将相关的输出变量转化为不相关的核主成分,再对每一核主成分进行模型与实验的对比,从而避免了传统多输出模型确认方法中需要求解多个输出的联合累积分布函数的困难。由于核主成分分析(PCA)方法能够有效提取分析对象的非线性成分,因此基于核主成分分析的多输出模型确认方法较基于主成分分析的模型确认方法更为稳定,这表现在相同的实验样本数据下核主成分分析的方法具有更低的出错率。另外核主成分分析通过核主成分提取,可以实现多输出模型的降维,从而降低多输出模型确认的复杂度。所提方法既可以用于一般的多输出模型的确认,也可以用于多确认点的输出模型的确认。最后通过数值算例和工程算例证明了该方法的正确性与有效性。 展开更多
关键词 模型确认 多输出 相关性 成分分析(kpca) 面积指标
在线阅读 下载PDF
基于KPCA降维分析的特高拱坝监测模型 被引量:1
15
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 成分分析(kpca) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
在线阅读 下载PDF
模式分析的核函数设计方法及应用 被引量:4
16
作者 柳桂国 柳贺 黄道 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期405-409,共5页
利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。运用该方法设计的核函数,应用在轴承正常振动信号数据、轴承内圈、外圈以及滚动体故障振动信号数据进行核主成分分析(KPCA)中,仿真结果表明:该方法可以有... 利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。运用该方法设计的核函数,应用在轴承正常振动信号数据、轴承内圈、外圈以及滚动体故障振动信号数据进行核主成分分析(KPCA)中,仿真结果表明:该方法可以有效地识别轴承正常和内圈、外圈以及滚动体故障。 展开更多
关键词 函数 模式分析 卷积算子 成分分析(kpca) 故障诊断
在线阅读 下载PDF
基于KPCA及最佳鉴别独立分量的人脸识别方法 被引量:2
17
作者 贺云辉 赵力 邹采荣 《应用科学学报》 CAS CSCD 北大核心 2005年第6期551-556,共6页
首先分析了独立分量分析(ICA)在人脸识别应用中存在的一些问题,然后从3个方面对基于独立分量分析的人脸识别方法进行了改进:首先利用KPCA将人脸映射到特征空间,在特征空间进行ICA得到相对于原样本的非线性独立分量,从而得到一种非线性... 首先分析了独立分量分析(ICA)在人脸识别应用中存在的一些问题,然后从3个方面对基于独立分量分析的人脸识别方法进行了改进:首先利用KPCA将人脸映射到特征空间,在特征空间进行ICA得到相对于原样本的非线性独立分量,从而得到一种非线性独立分量分析的方法;其次,定义了Fisher鉴别信息作为选取最佳鉴别独立分量的准则;最后,提出了一种用最佳独立分量表示待识别人脸图像的方法,克服了用直接投影得到的特征不准确的问题.基于ORL人脸数据库的实验表明,利用此改进的非线性最佳鉴别ICA方法,可以得到优于FLDA方法的识别性能,且在特征数较少时仍能得到较好的识别稳定性. 展开更多
关键词 人脸识别 独立分量分析 分量分析 最佳鉴别分析
在线阅读 下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
18
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 成分分析(kpca) 数据处理组合方法(GMDH) 温度建模与补偿 测量精度
在线阅读 下载PDF
基于PCA和KPCA特征抽取的SVM网络入侵检测方法 被引量:20
19
作者 高海华 杨辉华 王行愚 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期321-326,共6页
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-... 提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。 展开更多
关键词 异常检测 特征抽取 分量分析(PCA) 分量分析(kpca) 支持向量机 (SVM)
在线阅读 下载PDF
用核学习算法的意识任务特征提取与分类 被引量:10
20
作者 薛建中 闫相国 郑崇勋 《电子学报》 EI CAS CSCD 北大核心 2004年第10期1749-1753,共5页
介绍了核学习算法中核主分量分析 (KPCA)和支持向量机 (SVM)的基本原理 ,给出一种推广误差上界估计判据 ,实现了SVM核参数及惩罚因子的优化选取 .根据多变量自回归模型理论对 4个受试对象、三种不同意识任务的脑电信号进行特征提取 ,并... 介绍了核学习算法中核主分量分析 (KPCA)和支持向量机 (SVM)的基本原理 ,给出一种推广误差上界估计判据 ,实现了SVM核参数及惩罚因子的优化选取 .根据多变量自回归模型理论对 4个受试对象、三种不同意识任务的脑电信号进行特征提取 ,并利用KPCA方法进行降维预处理 ,对SVM进行训练和分类测试 .结果表明 ,KPCA算法在高维特征空间具有较强的特征选择能力 ,优化核参数的SVM的分类正确率明显高于径向基函数网络 ,三种意识任务的平均分类正确率达 78 6 % . 展开更多
关键词 分量分析 kpca 支持向量机 SVM 意识任务 脑电信号 EEG 特征提取
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部