期刊文献+

基于主分量分析的一维距离像雷达目标识别 被引量:6

Automatic radar target recognition based on PCA method using one-dimensional range profile
在线阅读 下载PDF
导出
摘要 一维距离像是自动目标识别的一种重要特征,它对目标姿态变化很敏感,只有通过进一步处理提取稳定特征才能够有效用于识别。针对距离像的这种姿态敏感性,首先分析了主分量分析(PCA)的降噪原理与核主分量分析(KPCA)的特征提取能力,然后提出先用PCA滤波对一维距离像降噪再用KPCA提取较大姿态角范围内稳定特征的雷达目标一维距离像识别框架,并用四类目标的实测数据进行分类实验,表明该算法确实能够提高识别性能。 One-dimensional range profile is an important feature for automatic target recognition, which is very sensitive to attitude changes of the target. Only by further processing and feature extracting can it be used for effective target recognition. In this paper, the principles of Primary Component Analysis (PCA) based noise-reduction and the powers of Kernel Primary Component Analysis (KPCA) for feature extraction are analyzed in detail. Then, a framework for automatic radar target recognition based on one-dimensional range profile is put forward, in which PCA filtering is used for noise-reduction of the range profile, and KPCA is proposed for extracting the stabilization feature over a large attitude angle. The results of recognition experiment with targets of four types show that the approach can really improve the performance of recognition.
出处 《电光与控制》 北大核心 2005年第5期28-31,共4页 Electronics Optics & Control
关键词 雷达目标识别 一维距离像 主分量分析 核主分量分析 automatic target recognition one-dimensional range profile PCA KPCA
作者简介 张仲明(1980-),男,浙江浦江人,硕士生,主要研究方向为雷达目标的特征提取与自动识别。
  • 相关文献

参考文献5

  • 1陈曾平 黄小红.雷达目标识别技术在空间目标识别中的应用[J].863航天航空技术,2003,(11):1-10.
  • 2NOVAK L M. Radar Target Recognition using Eigen-image[A]. IEEE International Radar Conference [C] . 1994, 129-131.
  • 3SHAW A K. Automatic target recognition using eigen-templates[A]. SPIE conference algorithms for SAR imagery V,448-459.
  • 4SCHOLKOPF B. Nonlinear component analysis as kernel eigenvalue problem[J]. Neural Computation, 1998, (10) :1299-1319.
  • 5SCHOLKOPF B. Input space versus feature space in kernel-based method [J]. IEEE Trans. NN, 1999, 10(5): 1000-1017.

共引文献4

同被引文献79

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部