期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于双层栈式长短期记忆的电网时空轨迹预测 被引量:2
1
作者 杨佳宁 黄向生 +2 位作者 李宗翰 荣灿 刘道伟 《计算机科学》 CSCD 北大核心 2019年第S11期23-27,32,共6页
随着广域量测技术的发展,提前辨识暂态稳定性并采取预防控制措施对电力系统的安全和稳定有着重要意义,而对电力系统的时空轨迹预测则是其中的关键。传统的无系统模型电网时空轨迹预测方法虽然不依赖于系统模型,计算速度较快,但是在预测... 随着广域量测技术的发展,提前辨识暂态稳定性并采取预防控制措施对电力系统的安全和稳定有着重要意义,而对电力系统的时空轨迹预测则是其中的关键。传统的无系统模型电网时空轨迹预测方法虽然不依赖于系统模型,计算速度较快,但是在预测过程中并没有考虑到电网的空间拓扑关系,另外,在现代复杂电网的大数据环境下,其预测精度相比于采用深度学习的方法仍有待提高。因此,提出了基于双层栈式长短期记忆和近邻节点拓扑关系的电网时空轨迹预测模型。它采用栈式长短期记忆的神经网络结构,并将所预测发电机节点的近邻一阶节点和二阶节点特征引入到了模型中。实验数据表明,支持向量回归法、循环神经网络方法、单层长短期记忆神经网络方法、基于双层栈式长短期记忆的电网时空轨迹预测方法在测试集上的预测均方根误差逐渐递减,预测精度逐渐增加,而在一阶节点和二阶节点分别引入电网时空轨迹预测的情况下,随着引入邻近节点的增加,预测精度也逐渐增加。相比于传统的电网时空轨迹预测方法,基于双层栈式长短期记忆和近邻节点拓扑关系的电网时空轨迹预测模型能更好地表征暂态场景下电网时空轨迹的变化,更精确地实现电网时空轨迹的预测。 展开更多
关键词 电力系统 栈式长短期记忆神经网络 暂态稳定 时空轨迹预测 空间拓扑信息.
在线阅读 下载PDF
隐式特征和循环神经网络的多声部音乐生成系统 被引量:5
2
作者 苗北辰 郭为安 汪镭 《智能系统学报》 CSCD 北大核心 2019年第1期158-164,共7页
音乐生成是一种使用算法来生成音乐序列的研究。本文针对音乐样本特征提取以及自动作曲问题提出了一种基于音乐隐式特征和循环神经网络(recurrent neural network, RNN)的多声部音乐生成算法。该方法通过使用栈式自编码器对多声部音乐... 音乐生成是一种使用算法来生成音乐序列的研究。本文针对音乐样本特征提取以及自动作曲问题提出了一种基于音乐隐式特征和循环神经网络(recurrent neural network, RNN)的多声部音乐生成算法。该方法通过使用栈式自编码器对多声部音乐序列每个时间步的音符隐式特征进行提取,结合长短期记忆循环神经网络(long short-term memory, LSTM),以序列预测的方式搭建了基于隐式特征的音乐生成模型。仿真结果表明,该音乐生成算法在使用相同风格的音乐数据训练后,得到的模型可以生成旋律与和弦匹配较好的多声部音乐数据。 展开更多
关键词 音乐生成 特征提取 循环神经网络 自编码器 多声部音乐 序列预测 长短期记忆循环神经网络 生成模型
在线阅读 下载PDF
基于SSAE-LSTM神经网络的风电变流器开路故障诊断 被引量:8
3
作者 张瑞成 白晓泽 +3 位作者 董砚 邸志刚 孙鹤旭 张靖轩 《可再生能源》 CAS CSCD 北大核心 2023年第3期361-369,共9页
针对风电变流器IGBT模块开路故障,在诊断中长时间序列信号的特征时难以提取和识别,文章提出了一种基于栈式稀疏自编码(SSAE)网络和长短期记忆(LSTM)神经网络的开路故障诊断方法。以网侧变流器为主要研究对象,首先,将预处理后的原始电流... 针对风电变流器IGBT模块开路故障,在诊断中长时间序列信号的特征时难以提取和识别,文章提出了一种基于栈式稀疏自编码(SSAE)网络和长短期记忆(LSTM)神经网络的开路故障诊断方法。以网侧变流器为主要研究对象,首先,将预处理后的原始电流信号输入SSAE网络,利用无监督学习方式进行逐层贪婪训练,并结合有监督学习方式对SSAE网络进行参数更新和局部微调,进而提取隐含层降维特征,构建特征矩阵;其次,利用LSTM神经网络在处理时间序列中的记忆优势,将特征矩阵作为LSTM网络的输入进行模型的训练;最后,利用Softmax分类器实现故障的识别和分类。诊断结果表明,该方法实现了自动提取网侧变流器的故障电流信号特征;同时所提方法能够风电变流器IGBT模块单一开路和双开路的22种开路故障问题进行准确地识别和分类,平均测试集准确率可达99.64%。 展开更多
关键词 风电变流器 故障诊断 特征提取 稀疏自编码 长短期记忆
在线阅读 下载PDF
基于seq2seq模型的非侵入式负荷分解算法 被引量:4
4
作者 岳建任 宋亚奇 +1 位作者 杨丹旭 李莉 《电测与仪表》 北大核心 2024年第6期65-71,共7页
非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长... 非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长短期记忆网络(long short-term memory,LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。 展开更多
关键词 非侵入负荷分解 seq2seq 卷积神经网络 长短期记忆网络 深度学习 低频采样
在线阅读 下载PDF
核电站板式换热器污垢热阻长时预测方法 被引量:3
5
作者 唐健 肖明轩 +3 位作者 侯晔 沈超 徐华 冯春 《电子测量技术》 北大核心 2021年第22期102-107,共6页
核电站对板式换热器使用需求正逐步上升,现有的污垢热阻预测模型泛化能力较低,时序序列角度设计方案较少。针对国内某核电站1号机组的RRI/SEC换热器的实验数据进行主成分分析,优化长短期记忆神经网络设计模型来预测瞬时污垢热阻,覆盖12... 核电站对板式换热器使用需求正逐步上升,现有的污垢热阻预测模型泛化能力较低,时序序列角度设计方案较少。针对国内某核电站1号机组的RRI/SEC换热器的实验数据进行主成分分析,优化长短期记忆神经网络设计模型来预测瞬时污垢热阻,覆盖12条管道温度和4条管道流量等变量。模型可精确预测未来25天内的污垢清洗需求,精度可达99.35%,能够在实际使用中,减少换热器监测的人力成本,以提前对板式换热器部分机组停机清洗,增加使用周期和整体机组换热效率。 展开更多
关键词 换热器 长短期记忆神经网络 污垢热阻预测模型
在线阅读 下载PDF
基于语境交互感知和模式筛选的隐式篇章关系识别 被引量:4
6
作者 郭凤羽 贺瑞芳 党建武 《计算机学报》 EI CSCD 北大核心 2020年第5期901-915,共15页
隐式篇章关系识别是篇章分析(Discourse Analysis)中一项具有挑战性的子任务,旨在推断出同一篇章内相邻文本片段(称为论元)之间潜在的语义连接关系,例如:时序关系、因果关系等.如何有效地表征篇章论元以及挖掘论元间的交互信息是实现该... 隐式篇章关系识别是篇章分析(Discourse Analysis)中一项具有挑战性的子任务,旨在推断出同一篇章内相邻文本片段(称为论元)之间潜在的语义连接关系,例如:时序关系、因果关系等.如何有效地表征篇章论元以及挖掘论元间的交互信息是实现该任务的核心要素.传统研究注重篇章中人工总结的表层语言特征(即情感词极性、位置特征和动词类型等),存在数据稀疏和预处理错误级联的问题,导致机器学习模型性能不高.新近的深度神经网络模型则自动提取篇章论元中的特征,利用注意力或记忆机制等捕获论元的重要信息,并组合不同神经网络提取大量关系特征,以提升模型识别性能.然而,其忽略了表示过程中论元间双向非对称的交互信息,以及识别过程中论元间交互模式的稀疏特性.受认知学相关理论的启发,本文提出基于语境交互感知和模式筛选的隐式篇章关系识别方法(MATS).首先,通过双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)分别编码两个论元,以获取带有上下文语境信息的论元表示;其次建模其动态交互注意力机制,以自动学习论元之间的非对称关联矩阵,进而得到融合语境交互感知信息的论元表示;最后,利用带有稀疏约束的张量神经网络捕捉具有篇章关系指示性的深层交互模式,从而提升模型的识别性能.Penn Discourse Treebank(PDTB)语料库上的实验结果表明,本文提出方法的精确率在其四分类上改善了2.36%. 展开更多
关键词 篇章关系识别 双向长短期记忆网络 交互注意力机制 稀疏约束 张量神经网络
在线阅读 下载PDF
基于SAE与CEEMDAN-BiLSTM组合模型的短期电力负荷预测 被引量:11
7
作者 黄炜 陈田 《计算机应用与软件》 北大核心 2022年第7期52-58,共7页
单一模型在迭代训练过程中由于模型的自身误差,最终会降低预测精度。为了提高预测的准确性,引入完整集成经验模态分解-双向长短期记忆网络(CEEMDAN-BiLSTM)作为误差修正模型,提出一种栈式自编码器(SAE)与CEEMDAN-BiLSTM相结合的负荷预... 单一模型在迭代训练过程中由于模型的自身误差,最终会降低预测精度。为了提高预测的准确性,引入完整集成经验模态分解-双向长短期记忆网络(CEEMDAN-BiLSTM)作为误差修正模型,提出一种栈式自编码器(SAE)与CEEMDAN-BiLSTM相结合的负荷预测模型。通过SAE模型学习气象因素、工作日类型、气温影响下负荷序列的主要特征,预测过程中产生的误差序列则反映了负荷序列的次要特征;使用CEEMDAN算法将误差序列分解为数个分量,针对每一项分量建立BiLSTM模型学习误差序列的时序特征,将各项分量的预测值累加得到误差的预测结果;将两种模型的预测值求和从而达到修正误差的目的。通过比较几种模型的预测结果表明:SAE与CEEMDAN-BiLSTM组合模型应用在短期电力负荷预测具有更好的准确性与稳定性。 展开更多
关键词 短期电力系统负荷预测 自编码器 CEEMDAN 双向长短期记忆网络
在线阅读 下载PDF
基于DTW-FCBF-LSTM模型的超短期风速预测 被引量:22
8
作者 董治强 《电测与仪表》 北大核心 2020年第4期93-98,共6页
为了实时调整电网调度计划、提高电网消纳风电的能力,提出了一种基于动态时间规整(DTW)进行相似数据分析、快速相关过滤方法(FCBF)进行输入属性特征选择、以及基于长短期记忆神经网络(LSTM)的超短期风速预测方法。利用DTW方法筛选出与... 为了实时调整电网调度计划、提高电网消纳风电的能力,提出了一种基于动态时间规整(DTW)进行相似数据分析、快速相关过滤方法(FCBF)进行输入属性特征选择、以及基于长短期记忆神经网络(LSTM)的超短期风速预测方法。利用DTW方法筛选出与待预测数据相似性高的训练样本;运用FCBF算法得到优选的输入特征集;构建LSTM模型进行超短期风速预测。以风电场实测数据为算例,将文中方法与现有算法的预测精度进行了对比,验证了所提方法的有效性和先进性。 展开更多
关键词 风速预测 人工智能 动态时间规整 快速相关过滤算法 长短期记忆神经网络
在线阅读 下载PDF
基于LSTM和启发式方法的遥感卫星地面站天线智能调度 被引量:4
9
作者 孙文军 马广彬 +2 位作者 田妙苗 林友明 黄鹏 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第4期532-542,共11页
遥感卫星地面站天线调度是解决遥感卫星数据接收天线资源不足和提高资源使用效率的有效途径。由于天线调度规则复杂,提出一种长短期记忆神经网络和启发式搜索相结合的智能调度方法。首先,使用长短期记忆神经网络模型从历史调度数据中提... 遥感卫星地面站天线调度是解决遥感卫星数据接收天线资源不足和提高资源使用效率的有效途径。由于天线调度规则复杂,提出一种长短期记忆神经网络和启发式搜索相结合的智能调度方法。首先,使用长短期记忆神经网络模型从历史调度数据中提取天线使用规则,并使用该规则为遥感卫星数据接收任务分配接收天线,得到初始调度方案;其次,使用启发式方法,对初始方案中数据联合接收和资源选择冲突两个问题加以修正,得到实际可行的调度方案。结果表明:本方法与结合启发式规则的遗传算法相比在资源利用率和计算效率上均有提升,证明了本方法的有效性。 展开更多
关键词 遥感卫星 地面站天线调度 长短期记忆神经网络 启发搜索 智能调度
在线阅读 下载PDF
基于LSTM算法的表面粗糙度监测系统
10
作者 庄曙东 史柏迪 +1 位作者 陈威 陈天翔 《机械设计与制造》 北大核心 2023年第4期80-84,共5页
加工过程中为避免因机床异常振动造成的零件表面粗糙度突变,提出一种基于LSTM算法的表面粗糙度监控模型,通过对主轴与台面安装传感器,实现机床振动量的实时采集并作为时序变量输入模型。在M-V5CN组合机床铣削U71Mn高锰钢样本集上证明该... 加工过程中为避免因机床异常振动造成的零件表面粗糙度突变,提出一种基于LSTM算法的表面粗糙度监控模型,通过对主轴与台面安装传感器,实现机床振动量的实时采集并作为时序变量输入模型。在M-V5CN组合机床铣削U71Mn高锰钢样本集上证明该模型可有效训练,且RMSprop优化器相对于Adam与SGD算法优化器可更有效降低模型泛化性误差。最终在嵌入式开发板中预测最大绝对误差低至0.01μm,平均误差为0.005μm可在加工中对表面粗糙度进行有效监控。 展开更多
关键词 表面粗糙度 刀具振动 长短期记忆神经网络 U71Mn高锰钢 嵌入开发
在线阅读 下载PDF
基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究 被引量:25
11
作者 李幼军 黄佳进 +1 位作者 王海渊 钟宁 《通信学报》 EI CSCD 北大核心 2017年第12期109-120,共12页
为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的... 为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的融合进行情感分类识别。通过将该方法用到开源数据集中进行验证,得到情感分类准确率达到0.792 6。实验结果表明,SAE对多模态生理特征进行了有效融合,LSTM RNN能够有效地对长时间周期中的关键特征进行识别。 展开更多
关键词 多模态生理信号情感识别 自编码神经网络 长短周期记忆循环神经网络 多模态生理信号融合
在线阅读 下载PDF
基于改进LSTM模型的航空安全预测方法研究 被引量:12
12
作者 曾航 张红梅 +2 位作者 任博 崔利杰 武江南 《系统工程与电子技术》 EI CSCD 北大核心 2022年第2期569-576,共8页
精确的航空安全预测是科学开展安全预警的前提。航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度。基于此,提出一种基于改进长短期记忆(long short-term memory,LSTM)模型的航空安全预测新方法。首先... 精确的航空安全预测是科学开展安全预警的前提。航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度。基于此,提出一种基于改进长短期记忆(long short-term memory,LSTM)模型的航空安全预测新方法。首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化LSTM模型超参数,最后以2019年某型运输机事故数据为算例,选取多种常用时序预测模型作为对照。实验结果表明本文所提方法,预测误差较现有方法降低了28%以上,同时具有较好的泛化能力和鲁棒性。 展开更多
关键词 航空安全 神经网络 长短期记忆 堆叠 多步预测
在线阅读 下载PDF
基于深度学习的减压音乐重构研究 被引量:1
13
作者 李哲 陈宇 +2 位作者 张博 陈亮 郭滨 《计算机应用与软件》 北大核心 2022年第8期158-162,共5页
音乐在旋律与和弦之间有复杂的匹配关系,音乐重构是长时间序列生成的算法研究。通过计算多轨道音乐序列的音乐频谱质心,使用栈式自编码器(SAE)对频谱质心较高的音乐进行音符特征提取,将音乐特征输入长短期记忆循环神经网络(LSTM),构建... 音乐在旋律与和弦之间有复杂的匹配关系,音乐重构是长时间序列生成的算法研究。通过计算多轨道音乐序列的音乐频谱质心,使用栈式自编码器(SAE)对频谱质心较高的音乐进行音符特征提取,将音乐特征输入长短期记忆循环神经网络(LSTM),构建多轨道音乐重构模型。分析重构音乐的和谐度和音符分布均方误差,结果表明该方法好于单独LSTM网络重构方法。设计受试者焦虑状态测评实验,分析播放重构音乐前后受试者的焦虑程度,从而验证生成重构的音乐可以有效减压。 展开更多
关键词 深度学习 音乐重构 频谱质心 自编码器 长短期记忆循环神经网络
在线阅读 下载PDF
基于SE-SAE特征融合和BiLSTM的锂电池寿命预测 被引量:3
14
作者 叶震 李琨 +1 位作者 李梦男 高宏宇 《电源技术》 CAS 北大核心 2023年第6期745-749,共5页
预测锂电池剩余使用寿命(RUL)时,针对电池外部特性参量电流、电压等单一的健康因子(HI)对电池退化特性无法完整覆盖的问题,提出一种结合通道注意力机制(SENet)和栈式自编码(SAE)进行特征融合并引入双向长短期记忆(BiLSTM)实现锂电池RUL... 预测锂电池剩余使用寿命(RUL)时,针对电池外部特性参量电流、电压等单一的健康因子(HI)对电池退化特性无法完整覆盖的问题,提出一种结合通道注意力机制(SENet)和栈式自编码(SAE)进行特征融合并引入双向长短期记忆(BiLSTM)实现锂电池RUL的预测方法。充分提取锂电池电压、电流等HI。利用SAE对多个锂电池HI特征进行特征融合,并结合SENet通道注意力机制,增加重要特征在提取过程中的表现能力。利用BiLSTM网络对融合HI进行训练预测。采用NASA和马里兰大学计算机辅助寿命周期工程中心(CALCE)锂电池数据集进行验证,训练预测数据均采用50%的比例划分,预测结果的均方根误差(RMSE)平均值达到0.017。 展开更多
关键词 SENet 自编码 特征融合 双向长短期记忆网络 电池寿命预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部