摘要
音乐生成是一种使用算法来生成音乐序列的研究。本文针对音乐样本特征提取以及自动作曲问题提出了一种基于音乐隐式特征和循环神经网络(recurrent neural network, RNN)的多声部音乐生成算法。该方法通过使用栈式自编码器对多声部音乐序列每个时间步的音符隐式特征进行提取,结合长短期记忆循环神经网络(long short-term memory, LSTM),以序列预测的方式搭建了基于隐式特征的音乐生成模型。仿真结果表明,该音乐生成算法在使用相同风格的音乐数据训练后,得到的模型可以生成旋律与和弦匹配较好的多声部音乐数据。
Music generation is a research area that uses algorithms to generate sequences with characteristics of music.Focusing on the problem of feature extraction from music samples and automatic music compositions,this paper proposes a polyphony music generation algorithm based on musical latent features and a recurrent neural network(RNN).The proposed algorithm uses a stacked autoencoder to extract latent features from of music sequence notes at each time step;the algorithm then uses long-short term memory RNNs to build a music generation system in the form of sequence prediction.The simulation results show that this algorithm can generate polyphony music with better melody and chord matching.
作者
苗北辰
郭为安
汪镭
MIAO Beichen;GUO Weian;WANG Lei(College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China;College of China and German,Tongji University,Shanghai 201804,China)
出处
《智能系统学报》
CSCD
北大核心
2019年第1期158-164,共7页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金项目(71771176
61503287)
作者简介
通信作者:苗北辰,男,1994年生,硕士研究生,主要研究方向为音乐生成的自动化。E-mail:m1104193501@163.com;郭为安,男,1985生,副教授,博士,IEEE会员,主要研究方向为人工智能理论和应用。作为独立PI主持的项目包括国家自然科学基金青年基金、面上基金、上海市科学技术委员会等国家级和省部级项目。发表学术论文20余篇,被SCI检索10篇;汪镭,男,1970年生,教授,博士生导师,主要研究方向为群体智能、并行实现技术。发表学术论文90余篇,出版专著4部。