期刊文献+
共找到559篇文章
< 1 2 28 >
每页显示 20 50 100
基于果蝇算法优化径向基神经网络模型的白光发光二极管可靠性 被引量:2
1
作者 黄伟明 文尚胜 傅轶 《光子学报》 EI CAS CSCD 北大核心 2016年第4期30-34,共5页
根据白光发光二极管失效物理机制选取理想因子、结温、色坐标漂移量等参数作为输入量,利用果蝇算法自学习优化标准径向基神经网络基函数宽度,提高输出精度.研究表明,径向基神经网络模型可以成功预测白光发光二极管可靠性衰变趋势,具有... 根据白光发光二极管失效物理机制选取理想因子、结温、色坐标漂移量等参数作为输入量,利用果蝇算法自学习优化标准径向基神经网络基函数宽度,提高输出精度.研究表明,径向基神经网络模型可以成功预测白光发光二极管可靠性衰变趋势,具有较高的稳定性和鲁棒性;利用果蝇算法优化后,预测平均误差成功减少为3.1%,对未来建立以神经网络为基础的发光二极管可靠性预测模型库提供有益帮助. 展开更多
关键词 可靠性分析 白光发光二极管 径向神经网络 FOA算法
在线阅读 下载PDF
单级齿轮系统混沌运动及其径向基函数神经网络控制
2
作者 王瑞邦 田亚平 +3 位作者 张峰 卢杭 王建勤 杨江辉 《噪声与振动控制》 北大核心 2025年第4期32-38,共7页
为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré... 为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré截面上点的欧式距离为输入,构建径向基函数神经网络控制器,使用改进局部搜索能力和寻优速度的引力搜索算法优化径向基函数神经网络控制器的参数,实现系统混沌运动向周期运动的有效控制。结果表明径向基函数神经网络控制方法不受系统的Jacobian矩阵和流形的限制更具有工程普适性。 展开更多
关键词 振动与波 单级齿轮传动系统 混沌控制 径向函数神经网络 万有引力搜索算法
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
3
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
基于神经网络的船测稀疏海域地形反演改进算法
4
作者 欧阳明达 翟振和 +3 位作者 牛向华 管斌 张鹏飞 付永健 《中国惯性技术学报》 北大核心 2025年第1期64-69,共6页
针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,... 针对重力地质法在船测稀疏海域反演海底地形时的精度下降问题,提出径向基函数神经网络改进算法,即将船测已知点上重力异常、低分辨率海底地形、垂直重力梯度等与海底地形存在关联要素作为输入数据,将长波重力异常作为输出数据进行训练,所建立神经网络模型用于长波重力异常格网构建,达到提高地形反演精度的目的。为验证改进算法有效性,设计7种不同组合模式,将南中国海某海域作为研究对象,对比形成最优方案,结果表明,在船测稀疏海域,改进方案相比重力地质法反演精度提高40%以上。 展开更多
关键词 重力地质法 径向函数神经网络算法 重力异常 海底地形
在线阅读 下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
5
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向函数神经网络算法 高频转阀 液压马达 转速控制
在线阅读 下载PDF
基于GWO-RBF神经网络的城市机动车能耗预测
6
作者 李四洋 张瑞 +2 位作者 李雅男 陈贺鹏 陈艳艳 《科学技术与工程》 北大核心 2025年第8期3480-3486,共7页
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net... 在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。 展开更多
关键词 机动车 能耗 径向函数神经网络(RBFNN) 灰狼算法(GWO)
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
7
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子群优化算法 参数预测
在线阅读 下载PDF
基于径向基神经网络与粒子群算法的双叶片泵多目标优化 被引量:23
8
作者 王春林 胡蓓蓓 +1 位作者 冯一鸣 刘轲轲 《农业工程学报》 EI CAS CSCD 北大核心 2019年第2期25-32,共8页
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性... 针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。 展开更多
关键词 算法 优化 数值模拟 径向神经网络
在线阅读 下载PDF
基于GWO-RBF神经网络的车用燃料电池剩余使用寿命预测
9
作者 王文 张晗 +3 位作者 张擘 李斌 杨继斌 王乐 《科学技术与工程》 北大核心 2025年第14期5897-5904,共8页
为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的... 为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的剩余使用寿命进行预测。首先,通过对初始时刻燃料电池极化曲线的分析,构建以相对功率损耗率为健康指标的计算方法,并采用灰色关联度分析方法验证其可行性。然后,应用GWO算法优化的RBF神经网络预测车用质子交换膜燃料电池的剩余使用寿命。最后,采用两组数据集对提出的方法进行了验证分析。结果表明:与其他方法相比,提出的基于GWO-RBF方法的平均绝对百分比误差、均方根误差最小,决定系数最大,相对误差小于1%。可见本文方法能够以较少的数据集、较高的精度预测车用质子交换膜燃料电池的剩余使用寿命。 展开更多
关键词 燃料电池 寿命预测 相对功率损耗率 灰狼优化算法 径向神经网络
在线阅读 下载PDF
径向基概率神经网络的混合结构优化算法 被引量:14
10
作者 赵温波 杨鹭怡 王立明 《系统仿真学报》 CAS CSCD 2004年第10期2175-2180,2184,共7页
使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-... 使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-μGA具有很好的优化效率,而且优化后的RBPNN的推广性能也没有下降。实验还验证了ROLS-μGA对径向基函数网络(RBFNN)也有很好的适用性。 展开更多
关键词 径向概率神经网络 结构优化 递归正交最小二乘算法 微遗传算法
在线阅读 下载PDF
采用免疫进化算法优化设计径向基函数模糊神经网络控制器 被引量:10
11
作者 左兴权 李士勇 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第4期521-525,共5页
基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成... 基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成初始群体;然后模拟生物适应性免疫应答过程,通过扩展操作在群体中较优秀个体的小邻域内进行局部搜索,同时利用突变操作在较差个体的大邻域内搜索;最后将设计的控制器用于控制倒立摆系统,仿真结果验证了该控制器的有效性. 展开更多
关键词 人工免疫系统 优化计算 径向函数模糊神经网络 模糊控制
在线阅读 下载PDF
基于果蝇——广义回归神经网络优化的WSN节点定位算法 被引量:7
12
作者 陈璟 虞继敏 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期31-38,共8页
针对无线传感器网络(WSN)基于测距的定位算法中,利用节点坐标计算方法获得的节点坐标位置存在较大误差的问题,提出一种无需进行坐标计算的果蝇—广义回归神经网络(FOA-GRNN)优化的WSN节点定位算法.该算法利用广义回归神经网络(GRNN)较... 针对无线传感器网络(WSN)基于测距的定位算法中,利用节点坐标计算方法获得的节点坐标位置存在较大误差的问题,提出一种无需进行坐标计算的果蝇—广义回归神经网络(FOA-GRNN)优化的WSN节点定位算法.该算法利用广义回归神经网络(GRNN)较快的学习速度和较强的逼近能力建立WSN节点定位模型,通过果蝇优化算法(FOA)调整广义回归神经网络的平滑参数,降低调整平滑参数时人为因素的影响,由神经网络直接输出未知节点坐标.仿真实验表明,通过果蝇算法优化的FOA-GRNN模型的节点定位精度比未经优化的GRNN模型的节点定位精度高.同时,比较了FOA-GRNN模型与BP神经网络模型、虚拟节点BP网络模型(VNBP)在WSN节点定位中效果,表明FOA-GRNN模型在WSN节点定位精确性方面具有明显优势. 展开更多
关键词 无线传感器网络 节点定位 广义回归神经网络 果蝇优化算法
在线阅读 下载PDF
最大绝对误差结合微遗传算法优化径向基概率神经网络 被引量:3
13
作者 赵温波 王立明 黄德双 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期179-187,共9页
使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的... 使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的RBPNN结构最简 ,而且在推广能力方面略好于其他几种优化方法 另外 ,MAE 展开更多
关键词 径向概率神经网络 结构优化 微遗传算法 最大绝对误差-微遗传算法
在线阅读 下载PDF
基于思维进化算法的径向基函数神经网络结构优化 被引量:2
14
作者 何小娟 曾建潮 徐玉斌 《计算机工程》 CAS CSCD 北大核心 2004年第9期72-73,78,共3页
为了解决一类径向基函数的结构优化问题,该文在基本思维进化计算框架的基础上,提出了一种有效的混合优化策略。在优化过程中充分利用样本的信息,同时借鉴信息矩阵的思想,提出了利用信息矩阵进行信息抽取和信息积累的方法,并设计了... 为了解决一类径向基函数的结构优化问题,该文在基本思维进化计算框架的基础上,提出了一种有效的混合优化策略。在优化过程中充分利用样本的信息,同时借鉴信息矩阵的思想,提出了利用信息矩阵进行信息抽取和信息积累的方法,并设计了有效的趋同、异化算子与个体之间学习的具体过程,使结构和参数同时得到了优化。仿真研究表明,该算法是快速有效的,并能保证网络具有较好的泛化能力。 展开更多
关键词 RBF神经网络 思维进化计算 结构优化 径向函数神经网络 结构优化
在线阅读 下载PDF
基于遗传算法优化的径向基神经网络在矿区GPS高程转换中的应用 被引量:2
15
作者 任东风 徐爱功 《大地测量与地球动力学》 CSCD 北大核心 2012年第4期103-105,110,共4页
利用基于遗传算法优化的径向基网络模型,对某矿区控制网的大地高和正常高数据建模,发现经遗传算法优化的径向基网络模型更适合实现这种转换。
关键词 高程转换 径向神经网络 遗传算法 GPS 矿区
在线阅读 下载PDF
自适应粒子群优化算法优化径向基函数神经网络用于电阻抗成像图像重建 被引量:45
16
作者 吴阳 刘凯 +2 位作者 陈柏 李芳 姚佳烽 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期240-249,共10页
电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 ... 电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 000个仿真样本,分为训练集和测试集。经过网络训练后,测试集上的图像相关系数(ICC)为0.95,仿真结果验证了APSO-RBFNN方法的有效性。当将30、40和50 dB的高斯白噪声添加到测试集中,ICC分别为0.90、0.92和0.93,证明了该方法的鲁棒性。对包含更多目标的样本重建结果说明了该方法具有良好的泛化能力。此外,8电极EIT系统的实验数据测试结果表明,相比于Tikhonov和RBFNN方法,APSO-RBFNN方法具有更好的图像重建结果。 展开更多
关键词 电阻抗成像 图像重建 逆问题 自适应粒子群优化算法 径向函数神经网络
在线阅读 下载PDF
基于特征优化和BSO-RBF神经网络的NO_(x)浓度预测模型 被引量:1
17
作者 张国兴 王世朋 《计量学报》 CSCD 北大核心 2024年第2期285-293,共9页
针对火力发电厂中燃烧系统运行工况复杂、迟延较大,导致选择性催化还原(SCR)烟气脱硝系统中入口NOx质量浓度难以准确测量的问题,提出了一种基于特征优化和径向基函数(radial basis function,RBF)神经网络的预测模型。将经过特征优化后... 针对火力发电厂中燃烧系统运行工况复杂、迟延较大,导致选择性催化还原(SCR)烟气脱硝系统中入口NOx质量浓度难以准确测量的问题,提出了一种基于特征优化和径向基函数(radial basis function,RBF)神经网络的预测模型。将经过特征优化后的变量作为模型的最终输入变量,并使用天牛群优化(beetle swarm optimization,BSO)算法对神经网络超参数进行寻优,建立入口NO_(x)浓度预测模型。结果表明,经过特征优化后的变量放入模型后,其预测结果要优于原始变量:经特征优化及时延处理后的模型其S_(RMSE)减少了44.5%,R^(2)增加了2.3%,经过BSO确定后的神经网络超参数使得模型精度也得到了进一步提升。 展开更多
关键词 NO_(x)浓度预测 特征优化 天牛群优化算法 径向函数 神经网络
在线阅读 下载PDF
基于果蝇优化算法与灰色神经网络的基金买卖决策仿真 被引量:2
18
作者 孙研 《统计与决策》 CSSCI 北大核心 2013年第23期57-59,共3页
运用最新优化算法的果蝇优化算法与灰色神经网络相结合改进预测精度,文章阐述果蝇优化算法和灰色神经网络算法相结合的技术,并将其应用到基金买卖决策的过程中,通过Matlab软件对结合算法的仿真验证,结果表明此结合的算法比单一的灰色神... 运用最新优化算法的果蝇优化算法与灰色神经网络相结合改进预测精度,文章阐述果蝇优化算法和灰色神经网络算法相结合的技术,并将其应用到基金买卖决策的过程中,通过Matlab软件对结合算法的仿真验证,结果表明此结合的算法比单一的灰色神经网络进行建模具有更好的效果和准确度。 展开更多
关键词 灰色神经网络 果蝇优化算法 金决策
在线阅读 下载PDF
基于平滑因子引入和神经网络优化的锂电池SOC估计方法
19
作者 付炳喆 李沂洹 +1 位作者 王玮 李慷 《电源技术》 CAS 北大核心 2024年第1期143-149,共7页
为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核... 为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核函数宽度及连接权值进行优化,解决了RBF神经网络结构和初始参数难以确定的问题。将滑动时间窗口内的放电容量作为平滑因子引入神经网络模型,增强了RBF网络对锂离子电池非线性特性拟合的能力。基于实验获得的锂离子电池在联邦城市行车计划(FUDS)工况下的数据,对所提出的方法进行仿真和验证,结果表明,所提方法显著提升了锂电池SOC的估计精度。 展开更多
关键词 电池荷电状态 径向神经网络 遗传算法 模糊C均值聚类 黄金分割优选法
在线阅读 下载PDF
基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型 被引量:101
20
作者 叶林 陈政 +1 位作者 赵永宁 朱倩雯 《电力系统自动化》 EI CSCD 北大核心 2015年第16期16-22,共7页
针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最... 针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日,把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量,提出K均值聚类和遗传算法的参数优化方法,建立基于GA—模糊RBF神经网络的最终预测模型。在光伏功率预测的基础上,提出一种平滑控制策略,对光伏并网功率进行有效调节,从而达到平滑光伏功率波动的目的。实例证明,所述预测模型具有较高精度,并验证了平滑功率波动控制策略的有效性。 展开更多
关键词 功率预测 遗传算法 模糊径向神经网络 平滑功率波动
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部