In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sink...In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.展开更多
In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ...In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.展开更多
基金Project(50975059) supported by the National Natural Science Foundation of ChinaProject(2006AA04Z231) supported by the National High-Tech Research and Development Program of China+2 种基金Project(ZJG0709) supported by Key Natural Science Foundation of Heilongjiang Province of ChinaProject(B07018) supported by the Program of Introducing Talents of Discipline to UniversityProject (SKLRS200801A02) supported by Chinese State Key Laboratory of Robotics and System Foundation
文摘In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.
基金Project(50878082) supported by the National Natural Science Foundation of ChinaProject(200631880237) supported by the Science and Technology Program of West Transportation of the Ministry of Transportation of ChinaKey Project(09JJ3104) supported by the Natural Science Foundation of Hunan Province, China
文摘In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.