期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于极值域均值模式分解的语音增强方法 被引量:5
1
作者 卢志茂 孙美玲 +1 位作者 张春祥 金辉 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1680-1684,共5页
增强低信噪比(signal to noise ratio,SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition,EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研... 增强低信噪比(signal to noise ratio,SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition,EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研究了极值域均值模式分解(extremum field mean mode decomposition,EMMD)方法。该方法改变了EMD只利用信号的极值点信息的单一做法,充分考虑输入信号所有信息,计算信号极值点间所有数据的均值,可以有效解决EMD中的端点效应问题。因此,提出了基于EMMD的语音增强方法,实验结果表明EMMD方法的引入,消除局部数据中隐含的支流分量,避免了EMD方法的端点效应问题,明显提高了带噪语音的SNR,改善了语音的质量。 展开更多
关键词 语音增强 极值域均值模式分解 经验模态分解 固有模态函数
在线阅读 下载PDF
基于EMMD分解的滚动轴承故障诊断 被引量:7
2
作者 张超 陈建军 +1 位作者 郭迅 魏永祥 《机械强度》 CAS CSCD 北大核心 2012年第5期650-656,共7页
针对滚动轴承损伤性故障的故障诊断问题,提出基于极值域均值模式分解(extremum field mean modedecomposition,EMMD)的故障诊断方法,进行故障特征频率的提取。首先通过EMMD方法将原始信号分解成若干个本征模函数(intrinsic mode functio... 针对滚动轴承损伤性故障的故障诊断问题,提出基于极值域均值模式分解(extremum field mean modedecomposition,EMMD)的故障诊断方法,进行故障特征频率的提取。首先通过EMMD方法将原始信号分解成若干个本征模函数(intrinsic mode function,IMF),然后通过计算各个IMF与原始信号的相关系数,确定包含故障特征信息的主要成分,除去虚假分量。最后针对主要成分的本征模函数进行Hilbert包络解调提取故障特征,即轴承的损伤性故障特征。通过工程实例信号的分析结果以及与经验模式分解(empirical mode decomposition,EMD)方法的对比均表明,该方法能较快地提取轴承的故障特征。 展开更多
关键词 故障诊断 极值域均值模式分解 本征模函数 经验模式分解 故障特征
在线阅读 下载PDF
基于第2代小波和EMMD的转子系统复合故障诊断 被引量:7
3
作者 张超 陈建军 郭迅 《振动.测试与诊断》 EI CSCD 北大核心 2011年第1期98-103,132,共6页
针对转子不平衡故障和滚动轴承微弱损伤性故障的复合故障诊断问题,提出了基于第2代小波和极值域均值模式分解(extremum field mean mode decomposition,简称EMMD)的故障诊断方法,进行了复合故障的耦合特征分离和故障特征频率的提取。该... 针对转子不平衡故障和滚动轴承微弱损伤性故障的复合故障诊断问题,提出了基于第2代小波和极值域均值模式分解(extremum field mean mode decomposition,简称EMMD)的故障诊断方法,进行了复合故障的耦合特征分离和故障特征频率的提取。该方法首先应用第2代小波对原始信号进行分解与重构;然后针对分解与重构出的低频信号进行频谱分析提取低频非调制故障特征;最后针对高频共振调制信号进行基于EMMD的解调分析,以准确提取调制故障特征。通过工程实例信号的分析结果表明,该方法能够提取转子系统的复合故障特征。 展开更多
关键词 复合故障 第2代小波 极值域均值模式分解 耦合特征
在线阅读 下载PDF
基于EMMD和BSS的单通道旋转机械故障诊断方法 被引量:12
4
作者 孟宗 梁智 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期635-642,共8页
针对在欠定的观测信号情况下,传统基于矩阵的盲源分离算法效果比较差的问题,提出一种基于极值域均值模式分解和盲源分离的单通道旋转机械信号故障特征提取方法,并应用于实际的故障诊断中。该方法先通过极值域均值模式分解法分解观测信号... 针对在欠定的观测信号情况下,传统基于矩阵的盲源分离算法效果比较差的问题,提出一种基于极值域均值模式分解和盲源分离的单通道旋转机械信号故障特征提取方法,并应用于实际的故障诊断中。该方法先通过极值域均值模式分解法分解观测信号,把得到的固有模态函数和原观测信号一起组成新观测信号,从而实现了信号升维,使欠定问题转化为正定问题;然后,由奇异值分解和贝叶斯准则进行源数估计;最后,利用基于四阶累积量的特征矩阵联合对角化方法实现信号的盲分离。通过仿真,验证了该方法对旋转机械故障信号进行盲源分离的可行性。将提出的方法应用到齿轮和轴承系统的故障诊断中,进一步证明了该方法的有效性。 展开更多
关键词 故障诊断 旋转机械 盲源分离 极值域均值模式分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部