CTCS-3级(Chinese Train Control System-3)列控车载设备在保障列车安全和提高运行效率方面发挥着重要作用。车载接口设备实现车载列车自动防护(ATP)系统与地面设备、司机和列车的交互,然而它的故障在车载设备故障中占比高。为了确定故...CTCS-3级(Chinese Train Control System-3)列控车载设备在保障列车安全和提高运行效率方面发挥着重要作用。车载接口设备实现车载列车自动防护(ATP)系统与地面设备、司机和列车的交互,然而它的故障在车载设备故障中占比高。为了确定故障原因并保证行车安全,提出一种基于时序知识图谱补全的列控车载接口设备故障诊断方法。首先,采用引入时序的方式整合行车日志和故障统计数据,从而提取故障现象并对齐实体,构建时序知识图谱;其次,构建基于图谱补全的故障诊断网络,融合时序翻译(T-TransE)向量化算法、双向长短期记忆(Bi-LSTM)网络和自注意力(SA)机制提取时序特征;最后,使用某铁路局近几年的车载接口设备故障数据对T-TransE向量化模型进行预训练,选出效果最佳的时序引入方式。为验证所提方法的优越性以及数据结合方式的有效性,使用车载故障数据对不进行数据结合且不进行时序关系引入的故障诊断网络以及其他常见的故障诊断网络进行测试。实验结果表明,在同一语料的情况下,与其他故障诊断框架相比,基于时序知识图谱补全的故障诊断模型正确率最高,达到96.69%。展开更多
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井...钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。展开更多
文摘CTCS-3级(Chinese Train Control System-3)列控车载设备在保障列车安全和提高运行效率方面发挥着重要作用。车载接口设备实现车载列车自动防护(ATP)系统与地面设备、司机和列车的交互,然而它的故障在车载设备故障中占比高。为了确定故障原因并保证行车安全,提出一种基于时序知识图谱补全的列控车载接口设备故障诊断方法。首先,采用引入时序的方式整合行车日志和故障统计数据,从而提取故障现象并对齐实体,构建时序知识图谱;其次,构建基于图谱补全的故障诊断网络,融合时序翻译(T-TransE)向量化算法、双向长短期记忆(Bi-LSTM)网络和自注意力(SA)机制提取时序特征;最后,使用某铁路局近几年的车载接口设备故障数据对T-TransE向量化模型进行预训练,选出效果最佳的时序引入方式。为验证所提方法的优越性以及数据结合方式的有效性,使用车载故障数据对不进行数据结合且不进行时序关系引入的故障诊断网络以及其他常见的故障诊断网络进行测试。实验结果表明,在同一语料的情况下,与其他故障诊断框架相比,基于时序知识图谱补全的故障诊断模型正确率最高,达到96.69%。
文摘钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。