大规模风电集群功率输出不确定性对接入电网频率造成不利影响,为了使风电集群与传统电源协调配合共同参与系统调频,提出一种基于随机分层分布式模型预测控制(stochastic-hierarchical-distributed model predictive control,S-H-DMPC)...大规模风电集群功率输出不确定性对接入电网频率造成不利影响,为了使风电集群与传统电源协调配合共同参与系统调频,提出一种基于随机分层分布式模型预测控制(stochastic-hierarchical-distributed model predictive control,S-H-DMPC)的风电集群频率控制机会约束目标滚动规划方法(chance constrained goal rolling programming,CCGRP)。首先,建立考虑功率波动相关性的风电集群功率预测误差模型;其次,提出考虑风电集群功率预测误差随机向量的双层机会约束目标滚动规划方法,上层规划侧重电网拓扑结构及全区系统经济性,下层规划侧重平均系统频率增广模型(average system frequency augmented model,ASFAM)及分区运行安全性;最后,提出基于蒙特卡罗随机模拟的模型求解方法,该方法采用仿射变换算法,通过对风电集群功率预测误差随机向量进行抽样实现机会约束条件的处理。仿真算例表明,所提控制方法能有效提高风电集群参与系统调频的准确性,证明了方法的可行性与鲁棒性。展开更多
The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
文摘大规模风电集群功率输出不确定性对接入电网频率造成不利影响,为了使风电集群与传统电源协调配合共同参与系统调频,提出一种基于随机分层分布式模型预测控制(stochastic-hierarchical-distributed model predictive control,S-H-DMPC)的风电集群频率控制机会约束目标滚动规划方法(chance constrained goal rolling programming,CCGRP)。首先,建立考虑功率波动相关性的风电集群功率预测误差模型;其次,提出考虑风电集群功率预测误差随机向量的双层机会约束目标滚动规划方法,上层规划侧重电网拓扑结构及全区系统经济性,下层规划侧重平均系统频率增广模型(average system frequency augmented model,ASFAM)及分区运行安全性;最后,提出基于蒙特卡罗随机模拟的模型求解方法,该方法采用仿射变换算法,通过对风电集群功率预测误差随机向量进行抽样实现机会约束条件的处理。仿真算例表明,所提控制方法能有效提高风电集群参与系统调频的准确性,证明了方法的可行性与鲁棒性。
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.