期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于半监督模糊聚类算法的奶牛行为判别系统 被引量:2
1
作者 王俊 谭骥 +1 位作者 张海洋 赵凯旋 《中国畜牧兽医》 CAS 北大核心 2018年第11期3112-3121,共10页
以实时判别奶牛行为,提升精细养殖技术水平为目标,本试验以系统功耗低、检测灵敏度高、运行稳定性强为原则设计无线传感节点,研发了一种基于半监督模糊聚类算法的奶牛行为实时判别系统。为获取最佳通信距离及最优节点固定高度,对无线传... 以实时判别奶牛行为,提升精细养殖技术水平为目标,本试验以系统功耗低、检测灵敏度高、运行稳定性强为原则设计无线传感节点,研发了一种基于半监督模糊聚类算法的奶牛行为实时判别系统。为获取最佳通信距离及最优节点固定高度,对无线传感节点分别进行固定高度—通讯距离与丢包率关系测试、固定高度—数据波动关系测试,通信距离分别取10、20、30m,固定高度分别取10、20、30cm;并将半监督模糊聚类判别算法、K-means算法及BP神经网络算法在奶牛行为识别方面的准确度、精度及敏感度进行比较。结果显示,集成三轴加速度传感器ADXL345、处理器MSP430-F149、无线收发器CC1101等芯片设计的无线传感节点可精确采集奶牛运动加速度数据,满足长期可靠传输数据等工作要求。固定高度—通讯距离与丢包率、固定高度—数据波动关系测试结果显示,最优传输距离为10m,最佳节点固定高度为30cm。半监督模糊聚类算法性能最高,平均准确度达到95.4%,平均精度为53.0%,平均敏感度为60.6%。K-means算法的平均准确度达到90.3%,平均精度仅有39.9%,平均敏感度为45.6%。BP神经网络算法平均准确度达到93.7%,平均精度为45.5%,平均敏感度为47.0%。半监督模糊聚类算法具有准确性高、学习复杂度低、运行速度快的特点,具有良好的寻优能力,效率较高。 展开更多
关键词 奶牛运动行为 实时判别 无线传感节点 监督模糊聚类算法
在线阅读 下载PDF
基于半监督流形学习的WLAN室内定位算法 被引量:6
2
作者 夏颖 马琳 +1 位作者 张中兆 周才发 《系统工程与电子技术》 EI CSCD 北大核心 2014年第7期1422-1427,共6页
针对无线局域网室内定位系统中,因参考点密集布设而带来的数据采集、更新及定位匹配运算量增加的问题,提出了一种新的基于半监督流形学习的降维判别嵌入定位算法。该算法利用少量已标记数据和部分未标记数据,通过求解目标函数最优化,对... 针对无线局域网室内定位系统中,因参考点密集布设而带来的数据采集、更新及定位匹配运算量增加的问题,提出了一种新的基于半监督流形学习的降维判别嵌入定位算法。该算法利用少量已标记数据和部分未标记数据,通过求解目标函数最优化,对高维接收信号进行维数约减,保留最具判别力的定位特征,然后采用确定性定位算法找到定位特征与位置坐标的映射关系。实验结果表明,算法定位精度高于传统的定位算法,降低了离线阶段的数据采集工作量,便于后期数据库的实时更新。 展开更多
关键词 无线局域网 监督流形学习 降维 判别嵌入 定位算法
在线阅读 下载PDF
基于极小准则的完备正交判别局部保持算法 被引量:1
3
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2011年第3期145-150,共6页
以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个... 以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个基于极小准则的目标函数,该目标函数通过投影到总体散度矩阵的非零空间中有效地解决小样本问题,最后给出了该算法基于QR分解的正交投影矩阵的求解方法。人脸库上的实验结果表明了所提方法的有效性。 展开更多
关键词 完备正交判别局部保持投影算法 散度矩阵 监督判别投影算法 目标函数 非零空间
在线阅读 下载PDF
人脸识别中适合于小样本情况下的监督化拉普拉斯判别分析 被引量:8
4
作者 楼宋江 张国印 +1 位作者 潘海为 王庆军 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1730-1737,共8页
提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯... 提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯判别分析,算法在考虑非局部散度和局部散度时考虑了样本的类别信息;通过丢弃总体拉普拉斯散度矩阵的零空间,并将类内拉普拉斯散度矩阵投影到总体拉普拉斯散度矩阵的主空间中,然后在该空间中进行特征问题的求解,从而避免了小样本问题.通过理论分析,该算法没有任何判别信息损失,同时在计算上效率也较高.在人脸识别上的实验验证了算法的正确性和有效性. 展开更多
关键词 特征提取 人脸识别 保局算法 监督判别投影 监督化拉普拉斯判别分析 小样本问题
在线阅读 下载PDF
基于伪标签回归和流形正则化的无监督特征选择算法 被引量:3
5
作者 宋雨 肖玉柱 宋学力 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期263-272,共10页
无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.... 无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.具体地,联合伪标签回归和最大化类间散度来保证算法在迭代过程中学习伪标签,同时,自适应学习数据样本之间的局部几何结构,获得更加精准的标签信息和结构信息,进而选择具有高判别性且能保持数据流形结构的特征.在四个公开数据集上的对比实验表明,提出算法的特征选择结果优于现有的一些无监督特征选择算法. 展开更多
关键词 监督特征选择算法 判别信息 伪标签回归 最大化类间散度 流形正则化
在线阅读 下载PDF
正态重采样的改进行人再识别度量学习算法 被引量:6
6
作者 宋丽丽 李彬 +1 位作者 赵俊雅 刘国峰 《计算机工程与应用》 CSCD 北大核心 2020年第8期158-165,共8页
跨场景的行人再识别任务,现有度量学习算法由于小样本问题使得对模型参数的估计存在偏差,从而导致识别精度较低。在交叉二次判别分析度量学习算法的基础上,提出了一种基于样本正态性重采样算法,建立了半监督学习度量模型,以增强度量模... 跨场景的行人再识别任务,现有度量学习算法由于小样本问题使得对模型参数的估计存在偏差,从而导致识别精度较低。在交叉二次判别分析度量学习算法的基础上,提出了一种基于样本正态性重采样算法,建立了半监督学习度量模型,以增强度量模型的泛化能力。综合泛化后的度量模型和交叉二次判别算法,构建了加权组合的联合模型。选取了公开数据集VIPeR和CUHK01进行测试,测试结果显示该算法相比于原交叉二次判别算法以及相关的行人再识别算法有着明显的优势,尤其在rank-1上的识别精度分别超过了MLAPG算法和NFST算法7.79%和4.68%,且该算法对于训练数据量的变化具有较强的鲁棒性。 展开更多
关键词 行人再识别 度量学习算法 监督学习 交叉二次判别分析 统计推断 识别精度
在线阅读 下载PDF
基于半监督聚类方法的测试用例选择技术 被引量:4
7
作者 程雪梅 杨秋辉 +1 位作者 翟宇鹏 陈伟 《计算机科学》 CSCD 北大核心 2018年第1期249-254,共6页
回归测试的目的是保证软件修改后没有引入新的错误。但是随着软件的演化,回归测试用例集不断增大,为了控制成本,回归测试用例选择技术应运而生。近年来,聚类分析技术被运用到回归测试用例选择问题中。将半监督学习引入到聚类技术中,提... 回归测试的目的是保证软件修改后没有引入新的错误。但是随着软件的演化,回归测试用例集不断增大,为了控制成本,回归测试用例选择技术应运而生。近年来,聚类分析技术被运用到回归测试用例选择问题中。将半监督学习引入到聚类技术中,提出了判别型半监督K-means聚类方法(Discriminative Semi-supervised K-means clustering Method,DSKM)。该方法从回归测试的历史执行记录中挖掘出隐藏的成对约束信息,同时利用大量的无标签样本和少量的有标签样本进行学习,优化聚类的结果,并进一步优化测试用例选择的结果。实验表明,相对于ConstrainedKmeans方法和SSKM方法,DSKM方法能够更好地提高约简率并保持覆盖率。 展开更多
关键词 回归测试 测试用例选择 K-MEANS算法 成对约束 线性判别分析 监督聚类
在线阅读 下载PDF
一种基于局部保持的图嵌入有监督降维方法 被引量:3
8
作者 颜伟泰 《现代电子技术》 2022年第21期50-56,共7页
为了能够在降维时,保持数据的全局结构和局部流形信息并利用数据的类别信息来保持数据的判别信息,提出一种新的基于局部保持的图嵌入有监督降维算法。从基于流形学习的图嵌入方法入手,结合最小化重构误差的主成分分析思想,生成一个判别... 为了能够在降维时,保持数据的全局结构和局部流形信息并利用数据的类别信息来保持数据的判别信息,提出一种新的基于局部保持的图嵌入有监督降维算法。从基于流形学习的图嵌入方法入手,结合最小化重构误差的主成分分析思想,生成一个判别图,可以保持数据的判别性和局部流形结构,然后结合图嵌入方法,通过一个平衡因子去平衡数据的全局结构和局部流形之间的权重,最终得到一个低维投影。通过该方法得到的低维投影既能较好地保持数据的判别性,也让数据的全局结构和局部流形信息得以保留。通过对多种人脸图像和手写数字数据集进行大量的实验,结果表明,该方法实现了较低降维维度并且取得了最好的分类准确率,在特征提取方面,其分类识别效果优于传统降维算法。 展开更多
关键词 有监督降维算法 图嵌入 局部保持 特征提取 流形学习 人脸识别 主成分分析 线性判别分析
在线阅读 下载PDF
基于流形学习的网络数据流异常检测 被引量:3
9
作者 唐斯琪 潘志松 《济南大学学报(自然科学版)》 北大核心 2017年第2期118-128,共11页
将非线性流形学习应用于网络数据流的降维过程,基于局部保持投影(LPP)算法基本思想,提出基于类别信息的监督判别LPP(SDLPP)算法;与传统线性降维算法和传统流形学习算法的结果进行对比,以验证算法的准确性与稳定性;建立基于SDLPP算法的... 将非线性流形学习应用于网络数据流的降维过程,基于局部保持投影(LPP)算法基本思想,提出基于类别信息的监督判别LPP(SDLPP)算法;与传统线性降维算法和传统流形学习算法的结果进行对比,以验证算法的准确性与稳定性;建立基于SDLPP算法的网络数据流异常检测系统实施模型。结果表明:SDLPP算法通过多目标优化,在保证局部保持投影同时实现类间距离最大与类内距离最小,在挖掘低维特征空间嵌入的同时提高了分类效果;非线性的流形学习算法能有效挖掘高维数据中的低维流形,保证了维数约减过程中的非线性结构;SDLPP算法能够生成显式投影映射,泛化性较好,时间复杂度低,更加适合网络数据流实时监测系统,并可应用于实际的网络数据流入侵检测模型。 展开更多
关键词 网络数据流 异常检测 流形学习 有监督判别lpp算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部